Mysterious Discontinuity of Quantum Correlation

Stephan Weis — joint work with the co-autors of [1–4] Departamento de Matemática, IMECC, Universidade Estadual de Campinas, Brazil

Abstract

Projections of spaces of probability distributions are polytopes. In contrast, projections of quantum state spaces have flat and curved boundary portions whose coincidence produces discontinuities in the maximum-entropy principle and derived correlation quantities.

Do the discontinuities have a physical meaning?

Projections of State Spaces

The space of qu-*d*-it states \mathcal{M}_d is the convex set of positive semidefinite *d*-by-*d* matrices of trace one. Examples of 3D-projections of \mathcal{M}_3 [4]:

Convex Geometry

The set-valued face function $F : \mathbb{L} \to \mathbb{L}$ maps $x \in \mathbb{L}$ to the union of all closed segments in \mathbb{L} whose open segment contains x.

Theorem [3] (Lower semi-continuity)

Let $(x_i) \subset \mathbb{L}$ and $x \in \mathbb{L}$. If $\rho^*(x_i) \xrightarrow{i \to \infty} \rho^*(x)$ then

 $\dim F(x) \le \liminf_{i \to \infty} \dim F(x_i).$ (1)

If dim $F(x_i) \equiv 0$ then (1) shows that $x \in \mathbb{L}$ is a discontinuity point of ρ^* , if x is a limit of extreme points but no extreme point itself^(*). (*) Conjectured in [6]

Maximum-Entropy Inference

self-adjoint *d*-by-*d* matrices u_1, \ldots, u_r

linear map $\mathbb{E} : \mathcal{M}_d \to \mathbb{R}^r, \ \rho \mapsto \operatorname{tr}(\rho u_i)_{i=1}^r$ and projection $\mathbb{L} := \mathbb{E}(\mathcal{M}_d)$

MaxEnt inference map $\rho^* : \mathbb{L} \to \mathcal{M}_d$, $\rho^*(x) = \operatorname{argmax} \{ S(\rho) \mid \rho \in \mathcal{M}_d, \mathbb{E}(\rho) = x \},$ von Neumann entropy $S(\rho) = -\operatorname{tr} \rho \log(\rho)$

 ρ^* can be discontinuous [1] for $d \ge 3, r \ge 2$

Three-Party Correlation

The irreducible three-party correlation [5] inherits from ρ^* a discontinuity [3] at the GHZstate $(|000\rangle + |111\rangle)/\sqrt{2}$ while being regular in many other respects [2].

Challenges

Can we compute the discontinuities of ρ^* , or of the irreducible correlation?

Does the discontinuity of ρ^* have a meaning in the theory of topologically ordered systems [6]?

References

- [1] S. Weis, A. Knauf (2012) J Math Phys 53 102206
- [2] S. Weis, A. Knauf, N. Ay, M.-J. Zhao (2015) Open Syst Inf Dyn 22 1550006
- [3] L. Rodman, I. M. Spitkovsky, A. Szkoła, S. Weis (2016) J Math Phys 57 015204
- [4] K. Szymański, S. Weis, K. Życzkowski (in preparation)
- [5] N. Linden, S. Popescu, W. K. Wootters (2002) Phys Rev Lett 89 207901
- [6] J. Chen, Z. Ji, C.-K. Li, Y.-T. Poon, Y. Shen, N. Yu, B. Zeng, D. Zhou (2015) New J Phys 17 083019

This poster was presented at the Joint IAS-ICTP School on Quantum Information Processing, January 18-January 29, 2016, Nanyang Executive Centre, Nanyang Technological University, Singapore