THE *rI*-CLOSURE OF AN EXPONENTIAL FAMILY AND GROUND SPACES

Stephan Weis

Centre for Quantum Information and Communication, Université libre de Bruxelles, Belgium

Introduction

The maximum-entropy inference and the entropy distance from an exponential family of quantum states are geometrically described by the rI-closure of the exponential family and by the rI-projection onto the rI-closure.

- An exponential family \mathcal{E} consists of thermal states of maximal rank. The rI-closure cl \mathcal{E} contains states of non-maximal rank, for example ground states.
- The set of maximum-entropy inference states under linear constraints (Boltzmann 1877, Jaynes 1957) equals $cl \mathcal{E}$. If $cl \mathcal{E}$ is not norm closed, then the inference map has discontinuities (W and Knauf 2012) which correspond to ground energy level crossings (Leake et al. 2014, Chen et al. 2015, W 2016, W and Spitkovsky preprint).
- The entropy distances from \mathcal{E} equals that from cl \mathcal{E} and quantifies interaction (Ay 2002),

Closures in Norm and rI-Topology

E.H. Wichmann's Theorem (JMP 4, 884, 1963)

The projection $\pi_U(\mathcal{E})$ is the relative interior of $\pi_U(\mathcal{D}_n)$.

The convex set $\pi_U(\mathcal{D}_n)$ is isomorphic to the state space of the operator system $U + iU + \mathbb{C}\mathbb{1}$ (W 2018) and to a **joint algebraic numerical range** (Müller 2010).

Transversality Fails in the Norm Closure $\overline{\mathcal{E}}$

Figure: Two-dimensional exponential family $\mathcal{E}(U)$ where U is spanned by $X \oplus 1, Y \oplus 0 \in M_3$

irreducible correlation (Linden et al. 2002, Zhou 2008), stochastic interdependence (Ay and Knauf 2006); see also Amari 2001, Rauh 2011, W et al. 2015, Gühne et al. 2017.

Preliminaries

Algebra M_n of *n*-by-*n* matrices, Hilbert-Schmidt inner product $\langle a, b \rangle := \operatorname{tr}(a^*b), a, b \in M_n$, hermitian matrices $M_n^{\rm h} := \{a \in M_n \mid a^* = a\},\$

linear subspace $U \subset M_n^h$,

orthogonal projection $\pi_U: M_n^{\mathrm{h}} \to M_n^{\mathrm{h}}$ onto U.

State space $\mathcal{D}_n := \{ \rho \in M_n \mid \rho \succeq 0, \operatorname{tr}(\rho) = 1 \}$ of M_n , asymmetric distance of **relative** entropy $D: \mathcal{D}_n \times \mathcal{D}_n \to [0, \infty],$

 $D(\rho, \sigma) = \begin{cases} \langle \rho, \log(\rho) - \log(\sigma) \rangle, \text{ if image}(\rho) \subset \operatorname{image}(\sigma), \\ +\infty, & \text{else,} \end{cases}$

entropy distance $D(\rho, X) := \inf_{\sigma \in X} D(\rho, \sigma)$ of $\rho \in \mathcal{D}_n$ from $X \subset \mathcal{D}_n$.

Exponential map $R(a) = e^a / \operatorname{tr}(e^a)$, exponential family $\mathcal{E} = \mathcal{E}(U) = \{R(u) \mid u \in U\};$ in thermodynamics, $R(-\beta H)$ is the thermal state of $H \in M_n^{\rm h}$ at inverse temperature $\beta > 0$.

Information Geometry of an Exponential Family

Information geometry studies the differential geometry of manifolds of probability vectors

- (+1)-geodesics in \mathcal{E} (solid, red)
- components of $\overline{\mathcal{E}}$ outside of \mathcal{E} (dashed, blue)
- boundary of $\pi_U(\mathcal{D}_n)$ (dot-dashed, black)

 $\overline{\mathcal{E}}$ and U^{\perp} are not transversal as π_U maps a segment (dashed, blue) to a singleton (W and Knauf 2012)

An information closure solves the problem (W, Journal of Convex Analysis 21, 339, 2014).

The rI-Closure

- the acronym **rI** stands for **reverse information** and refers to the ordering of the arguments of the relative entropy (Csiszár and Matúš 2003)
- the open disks $\{\sigma \in \mathcal{D}_n \mid D(\rho, \sigma) < \epsilon\}, \rho \in \mathcal{D}_n, \epsilon \in (0, +\infty], \text{ form a base of the}\}$ **rI-topology**; caution: the rI-topology has to be defined as a sequential topology for ∞ -dim. von Neumann algebras (Csiszár 1964, Harremoës 2007)

• the **rI-closure** cl $X := \{ \rho \in \mathcal{D}_n \mid D(\rho, X) = 0 \}$ equals the closure in the rI-topology

The rI-Closure of an Exponential Family

Transversality

If $\rho \in \mathcal{D}_n$ then there is a unique state $\pi_{\mathcal{E}}(\rho) \in \operatorname{cl} \mathcal{E}(U)$ such that $\langle \rho - \pi_{\mathcal{E}}(\rho), U \rangle = 0$.

(Amari 1987) and quantum states (Petz 1994, Nagaoka 1995).

Pythagorean Theorem for Curves

Let $\rho, \sigma, \tau \in \mathcal{D}_n$, let σ, τ be of full rank n, and $\langle \rho - \sigma, \log(\tau) - \log(\sigma) \rangle = 0$. Then

 $D(\rho, \sigma) + D(\sigma, \tau) = D(\rho, \tau).$

Figure: (+1)-geodesic (solid, red) $\mu \mapsto R[\log(\sigma) + \mu(\log(\tau) - \log(\sigma))]$ (-1)-geodesic (dashed, blue) $\lambda \mapsto \sigma + \lambda(\rho - \sigma)$

Proof: $D(\rho, \tau) - D(\rho, \sigma) - D(\sigma, \tau) = \langle \rho, \log(\sigma) - \log(\tau) \rangle - \langle \sigma, \log(\sigma) - \log(\tau) \rangle = 0.$

Pythagorean Theorem

Let $\rho \in \mathcal{D}_n$, let $\sigma, \tau \in \mathcal{E}(U)$, and $\langle \rho - \sigma, U \rangle = 0$. Then

 $D(\rho, \sigma) + D(\sigma, \tau) = D(\rho, \tau).$

Figure: Two-dimensional exponential family $\mathcal{E}(U)$ where U is spanned by $X \oplus 1$ and $Y \oplus 1 \in M_3$ and where $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$; (+1)-geodesic included in \mathcal{E} (solid, red) intersects

 $\rho \bullet$

Pythagorean Theorem

If $\rho, \sigma \in \mathcal{D}_n$ and $\sigma \in \operatorname{cl} \mathcal{E}$ then $D(\rho, \pi_{\mathcal{E}}(\rho)) + D(\pi_{\mathcal{E}}(\rho), \sigma) = D(\rho, \sigma)$.

Projection Theorem

If $\rho \in \mathcal{D}_n$ then $D(\rho, \mathcal{E}) = D(\rho, \operatorname{cl} \mathcal{E}) = D(\rho, \pi_{\mathcal{E}}(\rho)).$

The state $\pi_{\mathcal{E}}(\rho)$ is called **rI-projection** of ρ to cl \mathcal{E} . Proofs of Thms: W, *ibid*, 2014

Algebra of the rI-Closure

An **exposed face** of $\pi_U(\mathcal{D}_n)$ is a subset of minimizers

 $F(u) := \operatorname{argmin}\{\langle z, u \rangle \mid z \in \pi_U(\mathcal{D}_n)\}, \qquad u \in U.$

The **ground projection** p(u) of $u \in U$ is the spectral projection of u corresponding to the smallest eigenvalue.

For all $u \in U$ and p = p(u), the exponential family $\mathcal{E}_p(U) := \{ \frac{p e^{p v p}}{\operatorname{tr}(p e^{p v p})} : v \in U \}$ lies in $\operatorname{cl} \mathcal{E}(U)$ as $\mathcal{E}_p(U) = \{\lim_{\mu \to \infty} R(v + \mu u) : v \in U\}; \text{ the restriction}\}$ $\pi_U|_{\mathcal{E}_n(U)}$ is a bijection to the (relative) interior of F(u).

Figure: Two-dim. exponential family $\mathcal{E}(U)$, (+1)geodesics (solid, red), boundary of $\pi_U(\mathcal{D}_n)$ (dashed, blue)

Just as relative interiors of exposed faces of $\pi_U(\mathcal{D}_n)$ do not cover $\pi_U(\mathcal{D}_n)$, cl \mathcal{E} is not

(-1)-geodesic orthogonal to U (dashed, blue) in σ

Proof: Use $\langle \rho - \sigma, \log(\tau) - \log(\sigma) \rangle = 0$ and the Pythagorean Theorem for Curves.

Transversality and Projection Theorem

Let $\rho \in (\mathcal{E}(U) + U^{\perp}) \cap \mathcal{D}_n$.

• There exists a unique state $\pi_{\mathcal{E}}(\rho) \in \mathcal{E}$ such that $\rho - \pi_{\mathcal{E}}(\rho) \perp U$. • We have $D(\rho, \mathcal{E}) = \min_{\sigma \in \mathcal{E}} D(\rho, \sigma) = D(\rho, \pi_{\mathcal{E}}(\rho)).$

Proof: Use the Pythagorean Theorem and distance properties of the relative entropy. \Box

Notice. If $\rho \in \mathcal{D}_n$ is the state of the system, then the **expected value** of $u \in U$ is $\langle \rho, u \rangle$, so $\pi_U(\mathcal{E})$ represents **expected value parameters** of \mathcal{E} .

We study a closure $\operatorname{cl} \mathcal{E}$ which is maximal, $\pi_U(\operatorname{cl} \mathcal{E}) = \pi_U(\mathcal{D}_n)$, and for which analogous theorems of information geometry hold.

Revised poster, presented at the conference "Quantum Information Theory" December 14, 2017, Institut Henry Poincaré, Paris

covered by limit points of (+1)-geodesics in \mathcal{E} .

Exhausting the rI-Closure

A **poonem** (Grünbaum 1966) of $\pi_U(\mathcal{D}_n)$ is, recursively defined, either an exposed face of $\pi_U(\mathcal{D}_n)$ or an exposed face of a poonem of $\pi_U(\mathcal{D}_n)$. The notion of **access sequence** (Csiszár and Matúš 2005) is equivalent to poonem.

Poonems of $\pi_U(\mathcal{D}_n)$ correspond to projections $p_1 \succeq p_2 \succeq \cdots$ where p_1 is a ground projection of $U, p_2 \in p_1 M_n p_1$ is a ground projection of $p_1 U p_1$, etc. (W 2011); one has

 $\bigcup \mathcal{E}_p(U) = \operatorname{cl} \mathcal{E},$

where the union extends over the projections p corresponding to poonems of $\pi_U(\mathcal{D}_n)$.