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Overview

A convex set is stable if the midpoint map px , yq ÞÑ 1
2 px ` yq is open.

Section 1 and 3 follow the chronological development of the theory of stable
compact convex sets during the 1970’s as described by Papadopoulou,
Jber. d. Dt. Math.-Verein (1982) 92. The theory includes work by
Vesterstrøm, Lima, O’Brien, Clausing, and Papadopoulou, among others.

Section 2 reports on a theory of generalized compactness (µ-compactness)
developed by Holevo, Shirokov, and Protasov in the first decade of the 21st
century. Density matrices form a stable µ-compact convex set. Applications
to the continuity of entanglement monotones and von Neumann entropy are
mentioned.

Sections 4 and 5 describe problems in finite dimensions related to stability of
the set of density matrices: Continuity of inference, ground state problems,
geometry of reduced density matrices, and continuity of correlation quantities.
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The CE-property (“continuous envelope”)

Definition 1. K ,Y ,A are subsets of a locally convex
Hausdorff space; A is closed and bounded, CpAq is the set
of bounded continuous real functions on A, and M`

1 pAq the
space of regular Borel probability measures on A (weak
topology); if A is convex, then ApAq is the set of continuous
affine real functions on A; K is a compact convex set.

if A is convex, then the lower envelope of f P CpAq is

f̌ : AÑ R, f̌ pxq “ suptgpxq : g ď f ,g P ApAqu,

the barycenter of µ P M`
1 pK q is bpµq “

ş

K x dµpxq

Theorem 1. [Vesterstrøm, J. London Math. Soc. 2 (1973) 289]
b : M`

1 pK q Ñ K is open if and only if f P CpK q ñ f̌ P CpK q.
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On the proof of Theorem 1

Reminder. [Alfsen, Compact Convex Sets and Boundary Integrals,
Berlin: Springer (1971)]

f̌ pxq “ mintf pµq : x “ bpµq, µ P M`
1 pK qu, f P CpK q

M`
1 pK q is w˚-compact, b : M`

1 pK q Ñ K is a continuous,
affine, and surjective map, CpK q – ApM`

1 pK qq

abstractly: let Y be a compact convex set, φ : Y Ñ K a
continuous, affine, and surjective map, and f P ApY q; define

f̌φ : K Ñ R, f̌φpxq “ mintf pyq : x “ φpyq, y P Y u

Theorem 2. [Vesterstrøm, ibid] TFAE
a) φ is open
b) f̌φ P CpK q for all f P ApY q (f̌ b “ f̌ proves Thm. 1)
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Remark (continuity of inference maps)

Definition 2. Let φ : Y Ñ K as before. Assume f P CpY q
has for all x P K a unique minimum on φ´1pxq and define

Ψ : K Ñ Y , Ψpxq “ argmintf pyq : y P φ´1pxqu.

note: the inference map Ψ choses a point in each fiber of φ
which is optimal in the sense of minimizing f , a ranking function;
the optimal value is f pΨpxqq “ f̌φpxq “ mintf pyq : y P φ´1pxqu

Observation 1. [Continuity of inference] If f P CpY q has a
unique minimum in each fiber of φ, then

φ : Y Ñ K open ùñ Ψ : K Ñ Y continuous.

Proof. use Thm. 2 c) and compactness of Y
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Stability of compact convex sets

Def. 3. K is stable if K ˆ K Ñ K , px , yq ÞÑ x`y
2 is open.

note: relative topologies are used on K and K ˆ K

Theorem 3. [O’Brien, Math. Ann. 223 (1976) 207] TFAE
a) the interior of every convex subset of K is convex
b) the convex hull of every open subset of K is open
c) K is stable
d) @λ P r0,1s: K ˆ K Ñ K , px , yq ÞÑ p1´ λqx ` λy is open
e) K ˆ K ˆ r0,1s Ñ K , px , y , λq ÞÑ p1´ λqx ` λy is open
f) the barycenter map b : M`

1 pK q Ñ K is open

a)–e) are equivalent for general convex sets (Clausing and
Papadopoulou, Math. Ann. 231 (’78) 193)
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Standard example of a non-stable convex set

let K be the convex
hull of the union of the
circle

tp0, y , zq : y2`z2 “ 1u

and singletons

p˘1,0,1q
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Example 1 a) Failure of the CE-property

consider f P CpK q

f px , y , zq “ 1´ |x |

f p‚q “ 0, f p‚q “ 1
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Example 1 a) Failure of the CE-property

f̌ paq “ f paq for all ex-
treme points a of K

f̌ p‚q “ 0, f̌ p‚q “ 1

ùñ f̌ is discontinuous
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Example 1 b) Non-convex interior of a convex set

consider the cylinder

C “ tpx , y , zq :

y2 ` pz ´ 1
2q

2 ď p1
2q

2u

which extends in
x-direction, and the
convex set

K X C (blue)
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Example 1 b) Non-convex interior of a convex set

the boundary of
K X C is the surface

tpx , y , zq P K :

|x | ď 1
2 ,

y2 ` pz ´ 1
2q

2 “ p1
2q

2u,

the interior of K XC is
depicted blue region
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Example 1 b) Non-convex interior of a convex set

the red segment ends
on both sides in the
interior of K X C
(blue), but crosses the
boundary of K X C

ùñ the interior of
K X C is not convex
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Example 1 c) Non-open convex hull of an open set

consider the open
sets

O˘ “ tpx , y , zq P K :

˘x ą 1
2u

and their union

O “ O´ YO` (blue)
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Example 1 c) Non-open convex hull of an open set

convpOq is the union
of the interior of
K X C (blue) and the
red segment

ùñ convpOq is not
open
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Compact constraints on density matrices
how apply stability theory to density matrices?
let H be a separable Hilbert space, TpHq the separable Banach
space of trace-class operators on H with trace norm
}A}1 “ tr

?
A˚A

a density operator is a positive operator ρ P TpHq with trpρq “ 1;
the set SpHq of density operators, the state space, is closed,
bounded, and convex in TpHq

an H-operator is an unbounded positive operator H on H with
discrete spectrum of finite multiplicity

Lemma 1. [Holevo & Shirokov, Theory Prob. Appl. 50 (2006) 86]
The set tρ P SpHq : trpρHq ď hu is compact for every
H-operator H and h ă 8. For every compact subset
K Ă SpHq there exists an H-operator H and h ă 8 such
that trpρHq ď h for all ρ P K .
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µ-compact convex sets

SpHq has a generalized compactness property

Definition 4. Let A be a closed bounded subset of a
separable Banach space; for µ P M`

1 pAq let

bpµq “
ş

A x dµpxq (integral in the sense of Bochner).

A is µ-compact if the pre-image of every compact subset
of copAq under b : M`

1 pAq Ñ copAq is compact.

Lemma 1 and Prokhorov’s compactness theorem prove

Theorem 4. [Holevo and Shirokov, ibid] SpHq is µ-compact.
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Properties of µ-compact convex sets

let A be a µ-compact convex set, let extrpAq denote the set of
extreme points of A

Lemma 2. [Shirokov, Math. Notes 82 (’07) 395] For all f P CpAq

f̌ pxq “ mintf pµq : x “ bpµq, µ P M`
1 pAqu, x P A.

Lemma 3. [Protasov & Shirokov, Sbornik: Math. 200 (’09) 697]
copextrAq “ A “Krein-Milman’s theorem”

bpM`
1 pextrAqq “ A “Choquet’s theorem”
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Stability of density matrices

Theorem 5. [Shirokov, CMP 262 (2006) 137] SpHq is stable.

the Vesterstrøm-O’Brien theory generalizes to µ-compact
convex sets

Theorem 6. [Protasov and Shirokov, ibid]
Let A be a convex µ-compact set. TFAE
a) A is stable
b) the barycenter map b : M`

1 pAq Ñ A is open
c) the barycenter map b : M`

1 pextrAq Ñ A is open
d) f P CpAq ùñ f̌ P CpAq
Properties a)–d) imply extrA “ extrA.
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Application to entanglement monotones
Let f : SpHq Ñ R be concave. An entanglement monotone
E f : SpKq Ñ R of a bi-partite system K “ HbH is defined by

E f pρq “ inft
ř8

i“1 λi f ptr2 ρiq : convex sum ρ “
ř8

i“1 λiρi ,
ρi P extrpSpKqqu.

(Vidal, Plenio and Virmani, Osborne, etc.)

Theorem 7. [Protasov and Shirokov, ibid]
Let f P CpSpHqq be concave. Then E f P CpSpKqq.

Proof. E f pρq
aq
“ mintf ˝ tr2pµq : ρ “ bpµq, µ P M`

1 pextrSpKqqu
bq
“ mintf ˝ tr2pµq : ρ “ bpµq, µ P M`

1 pSpKqqu
cq
“­f ˝ tr2pρq

a) discrete measures are dense in
tµ P M`

1 pextrSpKqq : ρ “ bpµqu
b) f ˝ tr2 is concave; c) Lemma 2
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Application to von Neumann entropy
von Neumann entropy Spρq “ ´ tr ρ logpρq, ρ P SpHq

Remark. [Shirokov, Izvestiya: Math. 76 (2012) 840] Approx.
technique for lower semi-continuous concave functions.

(Ñ necessary and sufficient continuity condition for S)

let Φ : TpHq Ñ TpKq be a positive linear map;
the output entropy of Φ is SΦpρq “ SpΦpρqq

Theorem 8. [Shirokov, arXiv:1704.01905] TFAE
a) Φ preserves continuity of S, i.e. for any ρi

iÑ8
Ñ ρ P SpHq

Spρiq
iÑ8
Ñ Spρq ă 8 ùñ SΦpρiq

iÑ8
Ñ SΦpρq ă 8

b) Φ preserves finiteness of S, i.e. for any ρ P SpHq
Spρq ă 8 ùñ SΦpρq ă 8

c) SΦ is bounded on the set extrSpHq of pure states
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Remark (uniform continuity bounds for S)

Theorem 9. [Fannes, CMP 31 (1973) 291] d :“ dimpHq ă 8,
1
2}ρ´ σ}1 ď ε ď 1 ùñ |Spρq ´ Spσq| ď εd ` hpεq

with binary entropy hpxq “ ´x logpxq ´ p1´ xq logp1´ xq.

energy constraints are helpful if dimpHq “ 8

Theorem 10. [Winter, CMP 347 (2016) 191] Let H be an
H-operator such that Z pβq :“ trpe´βHq ă 8 for all β ą 0.
If E ě 0 and ρ, σ P SpHq such that trpρHq, trpσHq ď E , then

1
2}ρ´ σ}1 ď ε ď 1 ùñ |Spρq ´ Spσq| ď εSpγE{εq ` hpεq

where γf “ e´βf H{Z pβf q has expected energy f “ trpγf Hq.
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Stability in finite dimensions

Definition 5. From now on K Ă Rn is a compact convex
subset. The face function (Klee) of K is the multi-valued
map FK : K Ñ K , FK pxq “

Ť

y ,zPK ,xP sy ,zrry , zs.

FK is lower semi-continuous at x P K if @y P FK pxq and
@ open V Q y D an open U Q x such that
x 1 P U ñ FK px 1q X V ‰ H

a function f : K Ñ R is l.s.c. at x P K if @ε ą 0 D a neighborhood
U of x such that x 1 P U ñ f px 1q ą f pxq ´ ε

Theorem 11. [Papadopoulou, Math. Ann. 229 (’77) 193] TFAE
a) K is stable
b) FK is lower semi-continuous
c) dimpFK q is l .s.c.
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Example 1 d) Failure of lower semi-continuity

the face function FK
fails to be lower
semi-continuous on
the red segment
(except the endpoints)
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the dimension
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to be l.s.c. at the red
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Inference under linear constraints

Definition 2’. Consider the inference map Ψ : K Ñ Y ,

Ψpxq “ argmintf pyq : y P φ´1pxqu,

defined by a surjective affine map φ : Y Ñ K and f P CpY q
which has a unique minimum in each fiber of φ.

Quantum inference. H – Cn

Let xa,by :“ trpa˚bq denote Hilbert-Schmidt inner product,
M h

n :“ ta P Mn : a˚ “ au, U Ă M h
n a subspace,

and πU : M h
n Ñ M h

n the orthogonal projection onto U.
Define Y “ S “ SpCnq, φ “ πU |S, and K “ φpY q “ πUpSq.

Equivalently, replace U with F1, . . . ,Fk P M h
n and πU with the

map E : M h
n Ñ Rk , a ÞÑ xa,Fiy

k
i“1.

EpSq is the joint algebraic numerical range of F1, . . . ,Fk .
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Maximum-entropy inference
relative entropy Spρ, σq “ tr ρplogpρq ´ logpσqq of ρ, σ P S,
Spρ, σq “ `8 if ρpHq Ć σpHq (asymmetric distance)

Definition 6. Let an invertible state σ P S be fixed, let
ΨU,σ : πUpSq Ñ S denote quantum inference with respect
to the ranking function fσpρq “ Spρ, σq.

ΨU,1{n is maximum-entropy inference, since
logpnq ´ Spρ, 1n q “ Spρq “ ´ tr ρ logpρq is von Neumann entropy;
exponential family F “ FU,σ :“ t eθ`u

tr eθ`u : u P Uu Ă imagepΨU,σq

if θ :“ logpσq, can we say more?

• dX : SÑ r0,8s, dX pρq “ infτPX Spρ, τq, entropy distance from
X Ă S

• rX :“ tρ P S : dX pρq “ 0u, reverse information closure,
Csiszár and Matúš, IEEE Trans. Inf. Theory 49 (2003) 1474
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Entropic inference via reverse information topology

Theorem 12. [W, JCA 21 (2014) 339] For all a P S` UK there
is a unique πF paq P pa`UKq X rFU,σ. For all ρ P S, τ P rFU,σ

a) Spρ, τq “ Spρ, πF pρqq ` SpπF pρq, τq (Pythagorean thm.)

b) dF pρq “ d
rF pρq “ Spρ, πF pρqq (projection theorem)

a) shows that the image of ΨU,σ is rFU,σ;
hence, ΨU,σ is continuous if and only if rF is norm closed
(notice that image and graph of ΨU,σ are homeomorphic)

a) and b) show dF pρq “ SpπF pρqq ´ Spρq for all ρ P S
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Discontinuity of maximum-entropy inference ΨU,1{n

Example. Pauli matrices σ1 “
`

0 1
1 0

˘

, σ2 “
`

0 ´ i
i 0

˘

, σ3 “
`

1 0
0 ´1

˘

,
real *-algebra, R “ spantσ1 ‘ 0, iσ2 ‘ 0, σ3 ‘ 0,0‘ 1u

U “ spantσ1 ‘ 1, σ3 ‘ 0u, F1 “ σ1 ‘ 1, F2 “ σ3 ‘ 0,
circle of pure states ρα “ 1

2p1` cospαqσ1 ` sinpαqσ3q ‘ 0

the cone is the state space SpRq,
the ellipse below is πUpSpRqq,
the surface in SpRq is imagepΨq,

the ρα’s (base circle of SpRq) lie
in imagepΨq except for the bottom
point ρ0 of the red fiber of πU |SpRq

ñ Ψ is discontinuous at πUpρ0q

W. and Knauf, JMP 53 (2012) 102206
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Continuity of Ψ via openness of the affine map φ

the continuity condition of Observation 1 has a local counterpart

Definition 7. The map φ : Y Ñ K is open at y P Y if φpV q
is a neighborhood of φpyq for every neighborhood V of y .

Theorem 13. [W, CMP 330 (2014) 1263]
For each x P K the inference map Ψ is continuous at x if
and only if φ is open at Ψpxq.

K without reference to φ : Y Ñ K can witness openness of φ:

a) φ is open if K is a polytope, e.g. quantum inference where
F1, . . . ,Fk are commutative

b) φ is open on all fibers of relative interior points of K
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Disontinuity of Ψ for a stable Y
the relative interior ripX q of X is the interior in the affine hull of X

Theorem 14. [Rodman, Szkoła, Spitkovsky, W, JMP 57 (’16)]
Let Y be stable and let x P K such that Ψpxq P ripφ´1pxqq.
If a sequence pxiq Ă K converges to x and Ψpxiq Ñ Ψpxq
for i Ñ8, then dimpFK pxqq ď lim infiÑ8 dimpFK pxiqq.

Proof. use Papadopoulou’s Thm. 11 and compare the face
functions FK and FY

Example. Chien and Nakazato,
Lin. Alg. Appl. 432 (2010) 173,

reproduced from Szymański, W,
and Życzkowski, arXiv:1603.06569

F1 “
1
2

´

1 0 0
0 0 1
0 1 0

¯

, F2 “
1
2

´

0 0 1
0 0 0
1 0 0

¯

, F3 “

´

0 0 0
0 0 0
0 0 1

¯

the picture shows a surface whose
convex hull is EpSq
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Ground state problems

Def. 8. The smallest eigenvalue λ0paq of a P M h
n is the

ground state energy of a, its spectral projection p0paq the
ground space projection. PpUq :“ tp0puq : u P Uu Y t0u.

λ0puq “ minρPSxρ,uy “ minaPπUpSqxa,uy, u P U (Toeplitz)

Definition 9. An exposed face of a K is H or a subset of
the form argminxPK xx ,uy for some vector u. The lattice of
exposed faces of K is denoted EpK q.

• lattice isomorphism tp P Mn : p “ p2 “ p˚u – EpSq,
jppq “ tρ P S : spρq ĺ pu, support projection spρq (Kadison)

• lattice isomorphism PpUq – EpπUpSqq, isomorphism πU ˝ j
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Ground state energy: Level crossings
let F1,F2 P M h

n and for all θ P R let Apθq “ cospθqF1 ` sinpθqF2,

Apθqxk pθq “ λk pθqxk pθq (Rellich)

where txk pθqu
n
k“1 is an ONB of Cn analytic in θ; consider curves

zk pθq “ xxk pθq, pF1 ` i F2qxk pθqy “ Ep|xk pθqyxxk pθq|q

“ ei θpλk pθq ` iλ1k pθqq

in the numerical range EpSq

Theorem 15. [W, Rep. Math. Phys. 77 (2016) 251,
Leake, Lins, and Spitkovsky, Lin. Mult. Algebra 62 (2014) 1335]
If z is an extreme point of EpSq then there are k0 and θ0
such that z “ zk0pθ0q. The map ΨF1,F2,σ is continuous at z if
and only if for all k such that z “ zk pθ0q we have λk0 “ λk .

context of quantum phase transitions: Chen, Ji, Li, Poon, Shen,
Yu, Zeng, Zhou, New J. Phys. 17 (2015) 083019
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Discontinuity of Ψ means PpUq is not closed

Example. U “ spantσ1 ‘ 1, σ3 ‘ 0u,
PpUqzt0‘ 0,1‘ 1u “ tρα : α P s0,2πr u Y tρ0 ` 0‘ 1u

ρ0 lies in the closure of PpUq but
not in PpUq

the maximum-entropy is
discontinuous at πUpρ0q

in the drawing, ρ0 is the bottom
point of the red fiber of πU |SpRq

W. and Knauf, JMP 53 (2012) 102206
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Geometry of quantum marginals
a k -local Hamiltonian is a sum of hermitian matrices
a1 b ¨ ¨ ¨ b aN P MbN

n each term at most k non-scalar factors ai ;
denote the space of k -local Hamiltonians by Uk

Local Hamiltonian Problem. Given u P Uk and
pξ ´ ηq91{polypNq, determine whether the ground state
energy λ0puq is ą ξ or ă η.

Zeng, Chen, Zhou, Wen, arXiv:1508.02595,
Cubitt and Montanaro, SIAM Journal on Computing 45 (2016) 268

Geometric Problem. [Chen, Ji, Kribs, Wei, Zeng, JMP 53 (2012)]
The set of k -body marginals πUk pSq – ttrνpρq|ν|“k : ρ P Su
encodes ground state energy λ0puq “ minaPπUk

pSqxa,uy, u P Uk ;
goal: analyze exposed faces argminaPπUk

pSqxa,uy of πUk pSq

and lattice of ground space projections PpUk q – EpUk q
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Irreducible many-body correlation
exponential family Fk “ t

eu

tr eu : u P Uku of k -local Hamiltonians

Definition 10. irreducible correlation Ck pρq “ dFk pρq

Ck is the entropy distance from Fk and the difference of von
Neumann entropies Ck pρq “ SpπFk pρqq ´ Spρq (Thm. 12)

Ck quantifies correlation/complexity which cannot be described
by interactions between less than k particles; example k “ 1:
mutual information C1pρABq “ SpρAq ` SpρBq ´ SpρABq

multi-information C1pρABCq “ SpρAq `SpρBq `SpρCq ´SpρABCq

• statistics (Amari, IEEE Trans. Inf. Theory 47 (2001) 1701, Ay, Annals
Prob. 30 (2002) 416)

• quantum information (Linden et al. ibid, Zhou, PRL 101 (2008)
180505, Niekamp et al. J. Physics A 46 (2013) 125301, W. et al. OSID
22 (2015) 1550006)
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Example: 3-qubit 2-local Hamiltonians

Theorem 16. [Linden, Popescu, Wootters, PRL 89 (2002)
207901] If |ψy P pC2qb3 is not locally unitary equivalent to
α|000y ` β|111y, then πU2pρq “ πU2p|ψyxψ|q ñ ρ “ |ψyxψ|.

ñ πU2 |S is open at pure states ρ which are not locally unitarily
equivalent to α|000y ` β|111y
ñ C2pρq “ 0 and C2 is continuous at ρ

C2 is discontinuous at |GHZy “ 1?
2
p|000y ` |111yq, where

C2p|GHZyq “ 1, Zhou, PRL 101 (2008) 180505]

Theorem 14 and stability of S explain the discontinuity of C2 in
terms of geometry:

πU2p|GHZ yxGHZ |q is the midpoint of a segment but is
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Conclusion

Stability of SpHq provides analytic method to study continuity of
information theoretic quantities (von Neumann entropy,
entanglement monotones).

Stability of SpCnq gives new insights into continuity of inference,
ground state problems, geometry of reduced density matrices,
and continuity of correlation quantities.
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