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A convex set is stable if the midpoint map (x, y) — %(x + y) is open.

Section 1 and 3 follow the chronological development of the theory of stable
compact convex sets during the 1970’s as described by Papadopoulou,
Jber. d. Dt. Math.-Verein (1982) 92. The theory includes work by
Vesterstram, Lima, O’Brien, Clausing, and Papadopoulou, among others.

Section 2 reports on a theory of generalized compactness (u-compactness)
developed by Holevo, Shirokov, and Protasov in the first decade of the 21st
century. Density matrices form a stable pu-compact convex set. Applications
to the continuity of entanglement monotones and von Neumann entropy are
mentioned.

Sections 4 and 5 describe problems in finite dimensions related to stability of
the set of density matrices: Continuity of inference, ground state problems,

geometry of reduced density matrices, and continuity of correlation quantities.
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Stability of compact convex sets (4+8)
Stability of density matrices and applications (7)
The face function (1+2)

Continuity of inference (6)

Why is continuity of inference interesting? (6)

Conclusion (1)
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Definition 1. K, Y, A are subsets of a locally convex
Hausdorff space; A is closed and bounded, C(.A) is the set
of bounded continuous real functions on A, and M, (A) the
space of regular Borel probability measures on A (weak
topology); if A is convex, then A(A) is the set of continuous
affine real functions on A; K is a compact convex set.
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Definition 1. K, Y, A are subsets of a locally convex
Hausdorff space; A is closed and bounded, C(.A) is the set
of bounded continuous real functions on A, and M, (A) the
space of regular Borel probability measures on A (weak
topology); if A is convex, then A(A) is the set of continuous
affine real functions on A; K is a compact convex set.

if A is convex, then the lower envelope of f € C(A) is
f-A-R,  f(x)= sup{g(x) cg<fgeAlA},
the barycenter of 1 € M{"(K) is b(u) = §, x du(x)
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Definition 1. K, Y, A are subsets of a locally convex
Hausdorff space; A is closed and bounded, C(.A) is the set
of bounded continuous real functions on A, and M, (A) the
space of regular Borel probability measures on A (weak
topology); if A is convex, then A(.A) is the set of continuous
affine real functions on A; K is a compact convex set.

if A is convex, then the lower envelope of f € C(A) is
f-A->R,  f(x)=sup{g(x):g<fgeAlA},
the barycenter of 1 € M{"(K) is b(u) = §, x du(x)

Theorem 1. [Vesterstrgm, J. London Math. Soc. 2 (1973) 289]
b: M{(K) — K is open if and only if f € C(K) = f € C(K).



On the proof of Theorem 1
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On the proof of Theorem 1

abstractly: let Y be a compact convex set, ¢ : Y — K a
continuous, affine, and surjective map, and f € A(Y); define

fo KR, F(x)=min{f(y):x = o(y),yc Y}
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On the proof of Theorem 1

abstractly: let Y be a compact convex set, ¢ : Y — K a
continuous, affine, and surjective map, and f € A(Y); define

fo KR, F(x)=min{f(y):x = o(y),yc Y}




Remark (continuity of inference maps)
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Definition 2. Let ¢ : Y — K as before. Assume f e C(Y)
has for all x € K a unique minimum on ¢~'(x) and define

V:K Y, VY(x)=argmin{f(y):yeo '(x)}.

note: the inference map W choses a point in each fiber of ¢
which is optimal in the sense ofvminimizing f, a ranking function;
the optimal value is f(W(x)) = f%(x) = min{f(y) : y € ¢~ (x)}
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Remark (continuity of inference maps)

Definition 2. Let ¢ : Y — K as before. Assume f e C(Y)
has for all x e K a unique minimum on ¢~'(x) and define

V:K—Y, Y(x)=argmin{f(y):ye¢'(x)}.

note: the inference map W choses a point in each fiber of ¢
which is optimal in the sense ofvminimizing f, a ranking function;
the optimal value is f(V(x)) = f(x) = min{f(y) : y € ¢~ (x)}

Proof. use Thm. 2 ¢) and compactness of Y
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Stability of compact convex sets

note: relative topologies are used on K and K x K
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Stability of compact convex sets

Def. 3. K is stable if K x K — K, (x,y) — *%¥ is open. }

note: relative topologies are used on K and K x K

a)—e) are equivalent for general convex sets (Clausing and
Papadopoulou, Math. Ann. 231 ('78) 193)
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f(xay72) = 1 _ |X|
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f(a) = f(a) for all ex-
treme points a of K
F(o) = 0, F(s) = 1
— fis discontinuous
2 1L



Example 1 b) Non-convex interior of a convex set

1
A

consider the cylinder
C= {(vaaz) :
Y2+ (z— 32 < (3)?)

which extends in
x-direction, and the
convex set

K n C (blue)
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Example 1 b) Non-convex interior of a convex set

1
y 7
e the boundary of
= K n C is the surface
1_;/
\ {(x,y,z) e K:
é\\ x| < 3,
|
Z, Y2+ (z— 52 = (13,
|
—g\ the interiorof K n C is

depicted blue region
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Example 1 b) Non-convex interior of a convex set

1
e

the red segment ends
on both sides in the
interiorof K n C
(blue), but crosses the
boundary of K n C

— the interior of
K n C is not convex
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Example 1 ¢) Non-open convex hull of an open set

1
y o
o " ]
1 consider the open
o sets
_1///
1{/
\ O: ={(x,y,2)eK
\
it x> 5}
\
Z ., o
: and their union
|
|
_1
2%\ O=0_u0, (blue)
1
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Example 1 ¢) Non-open convex hull of an open set

1
1o
e o
1 conv(O) is the union
= of the interior of
e K ~ C (blue) and the
\\ red segment
\
2t
|
z 0\\* = conv(O) is not
\ open
_%x
|
_IL*\
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Stability of compact convex sets (4+8)
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how apply stability theory to density matrices?

let # be a separable Hilbert space, T(#) the separable Banach
space of trace-class operators on H with trace norm

Al = tr VA*A

a density operator is a positive operator p € T(H) with tr(p) = 1;
the set G(#) of density operators, the state space, is closed,
bounded, and convex in T(H)
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Compact constraints on density matrices
how apply stability theory to density matrices?

let # be a separable Hilbert space, T(#) the separable Banach
space of trace-class operators on H with trace norm

|Al1 = trvVA*A

a density operator is a positive operator p € T(H) with tr(p) = 1;
the set G(H) of density operators, the state space, is closed,
bounded, and convex in T(H)

an #-operator is an unbounded positive operator H on #H with
discrete spectrum of finite multiplicity
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S(H) has a generalized compactness property

Definition 4. Let A be a closed bounded subset of a
separable Banach space; for 1 € M;"(A) let

b(p) = § 4, xdu(x) (integral in the sense of Bochner).

A is p-compact if the pre-image of every compact subset
of co(A) under b : M;"(A) — co(A) is compact.
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S(H) has a generalized compactness property

Definition 4. Let A be a closed bounded subset of a
separable Banach space; for 1 € M;"(A) let

b(p) = § 4 xdu(x) (integral in the sense of Bochner).

A is p-compact if the pre-image of every compact subset
of co(A) under b : M;"(A) — co(A) is compact.

Lemma 1 and Prokhorov’s compactness theorem prove

Theorem 4. [Holevo and Shirokov, ibid] () is u-compact.



Properties of y-compact convex sets

let A be a u-compact convex set, let extr(.A) denote the set of
extreme points of A
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Properties of y-compact convex sets

let A be a u-compact convex set, let extr(.A) denote the set of
extreme points of A

15/39



Stability of density matrices
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Stability of density matrices

the Vesterstram-O’Brien theory generalizes to u-compact
convex sets




Let f: 6(H) — R be concave. An entanglement monotone
E': 5(K) — R of a bi-partite system K = H ® H is defined by
E'(p) = inf{3)7 Nif(tra p;) : convex sum p = Y72, \ipj,

. . N pi € extr(S(K))}.
(Vidal, Plenio and Virmani, Osborne, etc.)
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Application to entanglement monotones
Let f: 6(H) — R be concave. An entanglement monotone
E": &(K) — R of a bi-partite system K = H ® H is defined by
E(p) = inf{327 Nif (tra p;) : convex sum p = 372, \ip,
pi € extr(&(K))}.

(Vidal, Plenio and Virmani, Osborne, etc.)
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Application to entanglement monotones
Let f: 6(H) — R be concave. An entanglement monotone
E": &(K) — R of a bi-partite system K = H ® H is defined by
E(p) = inf{327 Nif (tra p;) : convex sum p = 372, \ip,
pi € extr(&(K))}.

(Vidal, Plenio and Virmani, Osborne, etc.)

a)

Proof. Ef(p) = min{fotra(u) : p = b(u), u € My (extr §(K))}
2 min{f o tra(y1) < p = b(u). € My (S(K))} L Fotra(p)

a) discrete measures are dense in
{1 e M (extr &(K)) : p = b(p)}
b) f o tro is concave; c) Lemma 2
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Application to von Neumann entropy
von Neumann entropy S(p) = —trplog(p), p € G(H)
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Application to von Neumann entropy
von Neumann entropy S(p) = —trplog(p), p € G(H)

let & : T(H) — T(K) be a positive linear map;
the output entropy of ® is Se(p) = S(®(p))




Remark (uniform continuity bounds for S)
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Remark (uniform continuity bounds for S)

energy constraints are helpful if dim(#) = «




Stability of compact convex sets (4+8)

Stability of density matrices and applications (7)
The face function (1+2)

Continuity of inference (6)

Why is continuity of inference interesting? (6)

Conclusion (1)
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Stability in finite dimensions
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Definition 5. From now on K < R" is a compact convex
subset. The face function (Klee) of K is the multi-valued

map Fx : K — K, Fx(x Uyzere]yz[[y’ z].

Fk is lower semi-continuous at x € K if Yy € Fx(x) and
Y open V 3y 3anopen U > x such that
XeU=FkX)nV+Z

afunction f: K > Risl.s.c. at x € K if Ve > 0 3 a neighborhood
Uof xsuchthat x’ e U= f(x') > f(x) — ¢
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Stability in finite dimensions

Definition 5. From now on K = R" is a compact convex
subset. The face function (Klee) of K is the multi-valued

map Fx : K — K, Fx(x) = Uy,zeK,xe]y,z[[}/a z].

Fk is lower semi-continuous at x € K if Vy € Fx(x) and
Y open V 3y 3anopen U > x such that
XeU=Fk(X)nV+Z

afunction f: K > Risl.s.c. at x € K if Ve > 0 3 a neighborhood
U of x suchthat X' € U= f(x') > f(x) — ¢
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the face function Fg
fails to be lower
semi-continuous on
the red segment
(except the endpoints)
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the dimension
function dim(Fg) fails

to be l.s.c. at the red
point
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Stability of compact convex sets (4+8)

Stability of density matrices and applications (7)
The face function (1+2)

Continuity of inference (6)

Why is continuity of inference interesting? (6)

Conclusion (1)
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Definition 2°. Consider the inference map ¥V : K — Y,

W(x) = argmin{f(y) : y € o~ (x)},

defined by a surjective affine map ¢ : Y — K and f € C(Y)
which has a unique minimum in each fiber of ¢.
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Definition 2°. Consider the inference map ¥V : K — Y,
V(x) = argmin{f(y) : y € o~ (x)},

defined by a surjective affine map ¢ : Y — K and f € C(Y)
which has a unique minimum in each fiber of ¢.

Quantum inference. # =~ C”

Let (a, b) := tr(a*b) denote Hilbert-Schmidt inner product,
M} .= {ae M, : a* = a}, U = M} a subspace,

and 7y : M — M} the orthogonal projection onto U.
Define Y = & = 6(C"), ¢ = myls, and K = ¢(Y) = my(6).
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Definition 2°. Consider the inference map ¥V : K — Y,

W(x) = argmin{f(y) : y € o~ (x)},

defined by a surjective affine map ¢ : Y — K and f € C(Y)
which has a unique minimum in each fiber of ¢.

Quantum inference. # =~ C”

Let (a, b) := tr(a*b) denote Hilbert-Schmidt inner product,
M} .= {ae M, : a* = a}, U = M} a subspace,

and 7y : M — M} the orthogonal projection onto U.
Define Y = & = 6(C"), ¢ = myls, and K = ¢(Y) = my(6).

Equivalently, replace U with Fy, ..., Fx € M and 7y with the
map E: MP - Rk a— (a, F)k ..
E(&) is the joint algebraic numerical range of Fq, ..., Fx.
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relative entropy S(p, o) = trp(log(p) — log(o)) of p,o € &,
S(p,0) = +wif p(H) € o(H) (asymmetric distance)

Definition 6. Let an invertible state o € & be fixed, let
Yy, my(6) — & denote quantum inference with respect
to the ranking function f,(p) = S(p, o).
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relative entropy S(p, o) = trp(log(p) — log(o)) of p,o € &,
S(p,0) = +wif p(H) € o(H) (asymmetric distance)

Definition 6. Let an invertible state o € & be fixed, let
Yy, my(6) — & denote quantum inference with respect
to the ranking function f,(p) = S(p, o).

Wy 1/n is maximum-entropy inference, since
log(n) — S(p, %) = S(p) = —trplog(p) is von Neumann entropy;
exponential family F = Fyy, := {{&5es : U € U} < image(Vy,,)

if 6 :=log(c), can we say more?
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relative entropy S(p, o) = trp(log(p) — log(o)) of p,o € &,
S(p,0) = +wif p(H) € o(H) (asymmetric distance)

Definition 6. Let an invertible state o € & be fixed, let
Yy, my(6) — & denote quantum inference with respect
to the ranking function f,(p) = S(p, o).

Wy 1/n is maximum-entropy inference, since
log(n) — S(p, %) = S(p) = —trplog(p) is von Neumann entropy;
exponential family F = Fyy, := {{&5es : U € U} < image(Vy,,)

if 6 :=log(c), can we say more?

e dx:6 — [0,00],dx(p) = inf.ex S(p, T), entropy distance from
Xc6

e X = {p e & : dx(p) = 0}, reverse information closure,
Csiszar and Matus, IEEE Trans. Inf. Theory 49 (2003) 1474
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Entropic inference via reverse information topology
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Entropic inference via reverse information topology

a) shows that the image of W, is Fy,;
hence, V , is continuous if and only if 7 is norm closed
(notice that image and graph of ¥, , are homeomorphic)

a) and b) show dx(p) = S(wx(p)) — S(p) forall pe &
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Example. Pauli matrices o1 = (91), 02 = ('), 03 = (§ %),
real *-algebra, R = span{oc1 ®0,ic0® 0,030 0,01}
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Example. Pauli matrices o1 = (91), 02 = ('), 03 = (§ %),
real *-algebra, R = span{oc1 ®0,ic0® 0,030 0,01}
U=span{oc1®1,03®0}, Ff =01®1, Fo =03®0,

circle of pure states p, = %(]l + cos(a)oq + sin(a)o3) @0

the cone is the state space G(R),
the ellipse below is my(S(R)),
the surface in G(R) is image(V),

the p,’s (base circle of &(R)) lie
in image(V) except for the bottom
point po of the red fiber of my|g(R)

= W is discontinuous at my(pg)

W. and Knauf, JMP 53 (2012) 102206
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the continuity condition of Observation 1 has a local counterpart

Definition 7. Themap ¢: Y — Kisopenaty e Yif ¢(V)
is a neighborhood of ¢(y) for every neighborhood V of y.
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Continuity of ¥ via openness of the affine map ¢

the continuity condition of Observation 1 has a local counterpart

Definition 7. Themap ¢: Y — Kisopenaty e Yif ¢p(V)
is a neighborhood of ¢(y) for every neighborhood V of y.
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Continuity of W via openness of the affine map ¢

the continuity condition of Observation 1 has a local counterpart

Definition 7. The map ¢: Y — Kisopenat y € Y if (V)
is a neighborhood of ¢(y) for every neighborhood V of y.

K without reference to ¢ : Y — K can witness openness of ¢:

a) ¢ is open if K is a polytope, e.g. quantum inference where
Fi,..., Fx are commutative

b) ¢ is open on all fibers of relative interior points of K

28/39



Disontinuity of V for a stable Y
the relative interior ri(X) of X is the interior in the affine hull of X

Proof. use Papadopoulou’s Thm. 11 and compare the face
functions Fx and Fy
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Disontinuity of V for a stable Y
the relative interior ri(X) of X is the interior in the affine hull of X

Example. Chien and Nakazato,
Lin. Alg. Appl. 432 (2010) 173,

reproduced from Szymanski, W, |
and Zyczkowski, arxiv:1603.06569  y
1 100 1 001 _ 000
F=3(g0)) Re=2(88) R=(3¢)
the picture shows a surface whose &
convex hull is E(S) ’ B
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Stability of compact convex sets (4+8)

Stability of density matrices and applications (7)
The face function (1+2)

Continuity of inference (6)

Why is continuity of inference interesting? (6)

Conclusion (1)
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Ground state problems
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Def. 8. The smallest eigenvalue \o(a) of ae M} is the
ground state energy of a, its spectral projection py(a) the
ground space projection. P(U) := {po(u) : ue U} u {0}.

Ao(U) = Minges{p, U) = MiNge, (&)<a Uy, Ue U (Toeplitz)

Definition 9. An exposed face of a K is ¢ or a subset of
the form argmin,_,(x, u) for some vector u. The lattice of
exposed faces of K is denoted £(K).
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Def. 8. The smallest eigenvalue \o(a) of ae M} is the
ground state energy of a, its spectral projection py(a) the
ground space projection. P(U) := {po(u) : ue U} u {0}.

Ao(U) = Minges{p, U) = MiNge, (&)<a Uy, Ue U (Toeplitz)

Definition 9. An exposed face of a K is ¢ or a subset of
the form argmin,_,(x, u) for some vector u. The lattice of
exposed faces of K is denoted £(K).

e lattice isomorphism {pe M, : p = p? = p*} = £(&),
j(p) = {pe &:s(p) < p}, support projection s(p) (Kadison)

e lattice isomorphism P(U) = £(my(S)), isomorphism 7y o j
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let Fy, F, € MM and for all 0 € R let A(9) = cos(6)F; + sin(8) F,
A0)xk(0) = A(0)xk(6) (Rellich)
where {xx(0)}7_, is an ONB of C" analytic in 6; consider curves
Zi(0) = <Xk (0), (F1 +1F2)x(0)) = E(|xx (6) )Xk (0)])
= & (A(0) +1Xc(9))
in the numerical range E(&)
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Ground state energy: Level crossings
let £y, Fo e MM and for all § € R let A() = cos(0)Fy + sin(8) Fa,

A(0)xk(0) = M (0)xk(0) (Rellich)
where {x(0)}}_, is an ONB of C" analytic in #; consider curves

Zk(0) = Xk (0), (F1 + 1 F2)x(0)) = E(|x(0)){xx (0)])
= €70 (0) +1X,(6))
in the numerical range E(S)

context of quantum phase transitions: Chen, Ji, Li, Poon, Shen,

Yu, Zeng, Zhou, New J. Phys. 17 (2015) 083019
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Example. U = span{oy ® 1,03 @ 0},
PUNMO®O0, 1@ 1} = {pa s ae]0,27[} U {po + 0@ 1}
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Example. U = span{oy ® 1,03 ® 0},
PUNOBO,1D1} = {po:aec]0,2r[}u{po+0D1}

po lies in the closure of P(U) but
not in P(U)

the maximum-entropy is
discontinuous at 7y (po)

in the drawing, pg is the bottom
point of the red fiber of 7y|g(g)

W. and Knauf, JMP 53 (2012) 102206
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a k-local Hamiltonian is a sum of hermitian matrices
a1 ®- - ®ay e M®N each term at most k non-scalar factors a;;
denote the space of k-local Hamiltonians by Uy

Local Hamiltonian Problem. Given u € U, and
(& —n)ocl/poly(N), determine whether the ground state
energy A\o(u) is > & or <.

Zeng, Chen, Zhou, Wen, arxiv:1508.02595,
Cubitt and Montanaro, SIAM Journal on Computing 45 (2016) 268
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a k-local Hamiltonian is a sum of hermitian matrices
a1 ®- - ®ay e M®N each term at most k non-scalar factors a;;
denote the space of k-local Hamiltonians by Uy

Local Hamiltonian Problem. Given u € U, and
(& — n)oc1 /poly(N), determine whether the ground state
energy A\o(u) is > & or <.

Zeng, Chen, Zhou, Wen, arxiv:1508.02595,

Cubitt and Montanaro, SIAM Journal on Computing 45 (2016) 268
Geometric Problem. [Chen, Ji, Kribs, Wei, Zeng, JMP 53 (2012)]
The set of k-body marginals 7y, (&) = {tr,(p), |-« : p € &}
encodes ground state energy A\g(U) = minaeﬂuk(6)<a, uy, ue Ug;
goal: analyze exposed faces argminaeﬂuk(6)<a, uy of my, (&)
and lattice of ground space projections P(Uy) = £(Uy)
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exponential family Fj = { e;, : U € Uy} of k-local Hamiltonians

tr

Definition 10. irreducible correlation Cx(p) = dz, (p)

Cx is the entropy distance from Fj and the difference of von
Neumann entropies Ck(p) = S(7z,(p)) — S(p) (Thm. 12)
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exponential family Fj = { e;, : U € Uy} of k-local Hamiltonians

tr

Definition 10. irreducible correlation Cx(p) = dz, (p)

Cx is the entropy distance from Fj and the difference of von
Neumann entropies Ck(p) = S(7z,(p)) — S(p) (Thm. 12)

Ck quantifies correlation/complexity which cannot be described
by interactions between less than k particles; example k = 1:
mutual information Cy(pag) = S(pa) + S(ps) — S(pas)
multi-information Cy(pasc) = S(pa) + S(ps) + S(pc) — S(pasc)
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exponential family 7, = {tre;, : U € Ug} of k-local Hamiltonians

Definition 10. irreducible correlation Cx(p) = dz, (p)

Cx is the entropy distance from Fj and the difference of von
Neumann entropies Ck(p) = S(7z,(p)) — S(p) (Thm. 12)

Ck quantifies correlation/complexity which cannot be described
by interactions between less than k particles; example k = 1:
mutual information Cy(pag) = S(pa) + S(ps) — S(pas)
multi-information Cy(pasc) = S(pa) + S(ps) + S(pc) — S(pasc)

e statistics (Amari, IEEE Trans. Inf. Theory 47 (2001) 1701, Ay, Annals
Prob. 30 (2002) 416)

e quantum information (Linden et al. ibid, Zhou, PRL 101 (2008)
180505, Niekamp et al. J. Physics A 46 (2013) 125301, W. et al. OSID
22 (2015) 1550006)

35/39



Example: 3-qubit 2-local Hamiltonians
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Example: 3-qubit 2-local Hamiltonians

= 7y,|s is open at pure states p which are not locally unitarily
equivalent to «|000) + 3[111)
= Co(p) = 0 and C; is continuous at p

C. is discontinuous at |GHZ) = \l@(|000> + [111)), where
C>(|GHZ)) = 1, Zhou, PRL 101 (2008) 180505]
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Example: 3-qubit 2-local Hamiltonians

= 7y,|s is open at pure states p which are not locally unitarily
equivalent to «|000) + 3[111)
= Co(p) = 0 and C; is continuous at p

C. is discontinuous at |GHZ) = \l@(|000> + [111)), where
C>(|GHZ)) = 1, Zhou, PRL 101 (2008) 180505]

Theorem 14 and stability of G explain the discontinuity of Cs in
terms of geometry:

7y, (|GHZ)(GHZ)) is the midpoint of a segment but is
approximated by exposed points of 7, (&)
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Stability of compact convex sets (4+8)

Stability of density matrices and applications (7)
The face function (1+2)

Continuity of inference (6)

Why is continuity of inference interesting? (6)

Conclusion (1)

37/39



Stability of G(#) provides analytic method to study continuity of
information theoretic quantities (von Neumann entropy,
entanglement monotones).

Stability of &(C") gives new insights into continuity of inference,
ground state problems, geometry of reduced density matrices,
and continuity of correlation quantities.
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Thank you for the attention

Thanks to Maksim E. Shirokov (Moscow) and Andreas Winter
(Barcelona) for discussions about infinite dimensions
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