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Part I
Ground Energy



Quantum Phase Transitions

are characterized in terms of

1) long-range correlation in ground state

2) non-analytic ground energy

3) geometry of reduced density matrices
Zauner-Stauber et al. New J. Phys. 18 (2016), 113033
& Chen et al. Phys. Rev. A 93 (2016), 012309

4) strong variation / discontinuity of MaxEnt maps
Arrachea et al. Phys. Rev. A 45 (1992), 7104
& Chen et al. New J. Phys. 17 (2015), 083019

this talk clarifies in the finite-dimensional setting relationships
between 2), 3), 4) and certain open mapping properties



Differentiability of Ground Energy

one-parameter Hamiltonian H(g) = H0 + g ⋅H1, g ∈ R

angular representation A(θ) = cos(θ)H0 + sin(θ)H1, θ ∈ (−π
2 ,

π
2 )

ground energy λ(X) = minimal eigenvalue of X

Observation
λ ○H is Ck /analytic at tan(θ) ⇐⇒ λ ○A is Ck /analytic at θ

focus on ground energy λ(θ) = λ ○A(θ)
advantage: reduced density matrices and MaxEnt maps are easier described
in angular coordinates



Part II
Convex Geometry



Convex Geometry

K ⊂ C ≅ R2 compact convex

support function
h̃K ∶ C→ R, h̃K (u) = minz∈K ⟨z,u⟩

exposed face F(u) = argminz∈K ⟨z,u⟩
h̃F(u)(v) = h̃′K (u; v) = directional
derivative = lim

t↘0

1
t (h̃K (u + tv) − h̃K (u))

end-points of exposed face, u ∈ S1

x±(u) = uh̃K (u) ± u⊥h̃′K (u;±u⊥) ∈ ∂K

using hK (θ)= h̃K (eiθ),
x±(eiθ) = eiθ(hK (θ) ± i h′K (θ;±1)) ∈ ∂K

x± restricted to u ∈ S1 with x+(u) = x−(u) is the reverse Gauss
map x±(u) = ∇h̃(u) which parametrizes ∂K as an envelope



Part III
Numerical Range



Numerical Range

density matrices Dn = {ρ ∈ Mn ∶ ρ ⪰ 0, tr(ρ) = 1}

numerical range W = {⟨ψ∣H0 + i H1∣ψ⟩ ∶ ⟨ψ∣ψ⟩ = 1}
= {trρ(H0 + i H1) ∶ ρ ∈ Dn}

W is the set of expected values of H0 and H1 (reduced density matrices)

Theorem 1 (Toeplitz) hW (θ) = λ ○A(θ) = λ(θ)
Math. Z. 2 (1918), 187

von Neumann entropy S(ρ) = − trρ log(ρ), ρ ∈ Dn

maximum-entropy inference map (MaxEnt map)

ρ∗ ∶ W → Dn, z ↦ argmax{S(ρ) ∶ trρ(H0 + i H1), ρ ∈ Dn}



Numerical Range — Diagonal Matrices

H0 = diag(E1
0 , . . . ,E

n
0 ) and H1 = diag(E1

1 , . . . ,E
n
1 )

W = conv{E1
0 + i E1

1 , . . . ,E
n
0 + i En

1 }

A(θ) = diag(E1
0 cos(θ) +E1

1 sin(θ), . . . ,En
0 cos(θ) +En

1 sin(θ))

• W is a polytope

• λ is piecewise harmonic

• x+ and x− are piecewise
constant

• flat boundary portions of W
≅ non-differentiable points of λ

• ρ∗ is continuous



Numerical Range — Non-Commutative

we assume dim(W ) = 2 ⇐ [H0,H1] ≠ 0

analytic curves λ1(θ), . . . , λn(θ) and ONB’s ∣ψk(θ)⟩n
k=1 such that

A(θ) =
n
∑
k=1

λk(θ) ∣ψk(θ)⟩ ⟨ψk(θ)∣

Rellich, IMM-NYU 2, New York: New York University, 1954

• λ is piecewise analytic

• the maximal order of
differentiability of λ is even
at non-analytic points

analytic

max. order 0

max. order 2



Numerical Range — Continuity of Inference

ρ∗ is analytic on the interior of W , W ○ ∋ z ↦ eµ1H1+µ2H2/ tr(”),
if z = x+(ei θ) then

ρ∗(z) = maximally mixed state on

span{ ∣ψk(θ)⟩ ∶ λk(θ) = λ(θ), λ′k(θ) = λ′(θ;+1) }

• the maps x+, x− ∶ S1 → ∂W cover all extreme points of W

• ρ∗∣∂W may be discontinuous at extreme points of W because of C2 smooth
eigenvalue crossings with the ground energy λ

• ρ∗∣F(u) is continuous on flat boundary portions F(u) ⊂ ∂W of W

• for z ∈ ∂W : ρ∗∣∂W is continuous at z ⇐⇒ ρ∗ is continuous at z

• discontinuities of ρ∗ are irremovable because ρ∗(W ) ⊂ ρ∗(W ○),
Wichmann JMP 4 (1963), 884

• discontinuities of ρ∗∣∂W may be removable



Numerical Range — Open Mappings

definitions

a map α ∶ X → Y between topological spaces is open at x ∈ X if α maps
neighborhoods of x to neighborhoods of α(x)

numerical range map f ∶ {∣ψ⟩ ∶ ⟨ψ∣ψ⟩ = 1} →W , ∣ψ⟩ ↦ ⟨ψ∣H0 + i H1∣ψ⟩
expected value map E ∶ Dn →W , ρ↦ trρ(H0 + i H1)

the inverse numerical range map f−1 is strongly (resp. weakly) continuous at
z ∈ W if for all (resp. for at least one) ∣ψ⟩ ∈ f−1(z) the map f is open at ∣ψ⟩

Noticeable: Openness of linear maps on state spaces of C∗-algebras are
studied since the 70’s (Lima, Vesterstrøm, O’Brian), with applications to
quantum information theory: Shirokov, Izvestiya: Math. 76 (2012), 840



Part IV
Results



Smoothness of λ, geometry of W , continuity of ρ∗

Let z = x+(eiθ) = x−(eiθ) be not a corner point: the statements in each
column are equivalent

λ is analytic locally at θ λ is C2k but not C2k+1

locally at θ, k ≥ 1

λ(θ) = λk(θ) = λl(θ)
λ′(θ) = λ′k(θ) = λ′l (θ)

⇒ λk = λl

∃k ∶ λ = λk locally at θ /∃ k ∶ λ = λk locally at θ

∂W is an analytic manifold locally at z ∂W is a C2k but
not a C2k+1 manifold

locally at z, k ≥ 1

ρ∗ is continuous at z ρ∗∣∂W has a
removable

discontinuity at z

ρ∗∣∂W has an
irremovable

discontinuity at z

Notice: S1 → ∂W , eiθ ↦ x±(θ) = eiθ(λ(θ) + iλ′(θ)) is only C2k−1 if λ is C2k !



Open Mapping Conditions

Let z ∈ W be arbitrary: the statements in each column are equivalent

ρ∗ is continuous at z ρ∗∣∂W has a
removable

discontinuity at z

ρ∗∣∂W has an
irremovable

discontinuity at z

f−1 is strongly
continuous at z

f−1 is weakly but not
strongly continuous

at z

f−1 is not weakly
continuous at z

E is open at ρ∗(z) E is not open at ρ∗(z)



Part V
Conclusion



Summary:
Geometry and inference approach to the
smoothness of the ground energy of a
one-parameter Hamiltonian
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