Quantum Weak Coin Flipping

talk at
SUMA 2019
Reunión anual de la UMA junto a la SOMACHI
Universidad Nacional de Cuyo, Mendoza, Argentina
September 27th, 2019
speaker
Stephan Weis

joint work with
Atul Singh Arora and Jérémie Roland
QuIC - Ecole Polytechnique de Bruxelles, Université libre de Bruxelles,
Belgium

Exciting Moments in the Quantum Sciences

- today, quantum key distribution works up to 100 km distance (telecom optical fiber) and allows secure communication relying only on the laws of physics; within the next 5 years we will see quantum key distribution over a large scale network in the Netherlands (Wehner et al. '18)
- the parties trust each other in key distribution; two-party tasks between distrustful, cooperative parties are more difficult, many of them are insecure even in quantum mechanics, e.g. secure computation or bit commitment
- an exception is weak coin flipping (WCF), the task of two distrustful parties, Alice and Bob, to agree on a random bit by following a communication protocol; in a breakthrough result in 2007, Mochon proved quantum WCF to be almost secure (see also Aharonov et al. '16); classical WCF is completely insecure (Kitaev, QIP '02)

- Alice and Bob have private registers A, B; they exchange a message register M in n rounds and act in turns with unitaries U_{i} on $A M$ and $M B$ - if they follow the protocol (are honest) then the state evolves as

$$
\left|\psi_{i}\right\rangle=U_{i} \ldots U_{2} U_{1}\left|\psi_{0}\right\rangle
$$

- they measure the state ρ after round n, obtaining random variables A, B with $(i=0,1)$

$$
\operatorname{Prob}(X=i)=\operatorname{tr}\left(\rho \Pi_{X}^{(i)}\right)
$$

■ if Alice and Bob are honest then $\operatorname{Prob}(X=i)=\left\langle\psi_{n}\right| \Pi_{X}^{(i)}\left|\psi_{n}\right\rangle$; a consistency assumption is that if they are honest, then $A=B$ with certainty and $\operatorname{Prob}(X=i)=\frac{1}{2}$ for $X=A, B$ and $i=0,1$

The Bias of a WCF Protocol

- the parties of a weak coin flip have preferred outcomes, say Alice wants 0 and Bob wants 1
- the cheating probability P_{A}^{*} of Alice is the probability that an honest Bob outputs 0, maximized over all quantum operations a cheating Alice could replace her unitaries with:

$$
P_{A}^{*}=\max \operatorname{Prob}(B=0) ;
$$

similarly, the cheating probability P_{B}^{*} of Bob is

$$
P_{B}^{*}=\max \operatorname{Prob}(A=1)
$$

■ the bias of a WCF protocol is $\epsilon=\max \left\{P_{A}^{*}, P_{B}^{*}\right\}-\frac{1}{2}$

Example (flip and declare protocol).
Alice flips a coin, sends the result to Bob. They both output the result. Here $P_{A}^{*}=1$ and $P_{B}^{*}=\frac{1}{2}$, so $\epsilon=\frac{1}{2}$.

The Cheating Probability as an SDP

Primal SDP $P_{A}^{*}=\max \operatorname{tr}\left[\left(\mathbb{1}_{M} \otimes \Pi_{B}^{(0)}\right) \rho_{n}\right]$ maximization over states $\rho_{0}, \rho_{1}, \ldots, \rho_{n}$ on $M B$ subject to

- $\operatorname{tr}_{M}\left(\rho_{0}\right)=\operatorname{tr}_{A M}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|=\left|\psi_{B, 0}\right\rangle\left\langle\psi_{B, 0}\right|$
- for i even $\operatorname{tr}_{M}\left(\rho_{i}\right)=\operatorname{tr}_{M}\left(U_{i} \rho_{i-1} U_{i}^{*}\right)$
- for $i \operatorname{odd} \operatorname{tr}_{M}\left(\rho_{i}\right)=\operatorname{tr}_{M}\left(\rho_{i-1}\right)$

Dual SDP $P_{A}^{*}=\min \operatorname{tr}\left[Z_{B, 0}\left|\psi_{B, 0}\right\rangle\left\langle\psi_{B, 0}\right|\right]$
minimization over $Z_{B, 0}, Z_{B, 1}, \ldots, Z_{B, n} \geq 0$ on B subject to

- for i even $\mathbb{1}_{M} \otimes Z_{B, i-1} \geq U_{i}^{*}\left(\mathbb{1}_{M} \otimes Z_{B, i}\right) U_{i}$
- for i odd $Z_{B, i-1}=Z_{B, i}$
- $Z_{B, n}=\Pi_{B}^{(0)}$

Dual SDP $P_{B}^{*}=\min \ldots$ with dual variables $Z_{A, 0}, Z_{A, 1}, \ldots, Z_{A, n}$

Point Games

■ analogous to measurement probabilities, if $|\psi\rangle$ is a vector and $Z=\sum z P_{z} \geq 0$, we define $\operatorname{prob}[Z,|\psi\rangle](z)=\langle\psi| P_{z}|\psi\rangle$ if $z \in \operatorname{sp}(Z)$ is an eigenvalue, otherwise $\operatorname{prob}[Z,|\psi\rangle](z)=0$

- consider the delta function $[x, y]$ with $[x, y](a, b)=1$ if $x=a \wedge y=b$, otherwise $[x, y](a, b)=0$; for each pair $Z_{A, i}=\sum_{x} x P_{x}$ and $Z_{B, i}=\sum_{y} y Q_{y}$ of a dual feasible point let

$$
p_{n-i}=\sum_{(x, y) \in \operatorname{sp}\left(Z_{A, i}\right) \times \operatorname{sp}\left(Z_{B, i}\right)}\left\langle\psi_{i}\right| P_{x} \otimes \mathbb{1}_{M} \otimes Q_{y}\left|\psi_{i}\right\rangle[x, y]
$$

- the sequence $p_{0} \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{n}$ of finitely supported functions $[0, \infty)^{2} \rightarrow[0, \infty)$ is called a point game

■ we assume that $Z_{A, 0}\left|\psi_{A, 0}\right\rangle=\beta\left|\psi_{A, 0}\right\rangle$ and $Z_{B, 0}\left|\psi_{B, 0}\right\rangle=\alpha\left|\psi_{B, 0}\right\rangle$; then the point game starts at $p_{0}=\frac{1}{2}([0,1]+[1,0])$ and ends at $p_{n}=[\beta, \alpha]$; the cheating probabilities are $P_{A}^{*} \leq \alpha$ and $P_{B}^{*} \leq \beta$; Goal: Get α, β as close as possible to $1 / 2$

Operator Monotone Functions

observations on the construction (for even i, similarly for odd)

- the transition $p_{i} \rightarrow p_{i+1}$ is vertical (horizontal for odd i), that is to say, $p_{i+1}-p_{i}=\sum_{x, y} f_{x}(y)[x, y]$ where $\sum_{y} f_{x}(y)=0$
- the vertical line transitions of $p_{i} \rightarrow p_{i+1}$ are EBM transitions (expressible by matrices), that is to say, for each $x \geq 0$ there are diagonal matrices $X, Y \geq 0$, a unitary U, and vectors $|v\rangle,|w\rangle$ satisfying $U X U^{*} \leq Y$ and $|w\rangle=U|v\rangle$, such that

$$
p_{i}[X, \cdot]=\operatorname{prob}[X,|v\rangle] \quad \text { and } \quad p_{i+1}[X, \cdot]=\operatorname{prob}[Y,|w\rangle]
$$

- the vertical line transitions of $p_{i} \rightarrow p_{i+1}$ lie in the dual cone to the cone of operator monotone functions $[0, \infty) \rightarrow \mathbb{R}$, in other words, $\Sigma_{y} f_{x}(y) h(y) \geq 0$ for each operator monotone function h

From Point Games Back to Unitaries

Mochon's Breakthrough Result from 2007. For all $\epsilon>0$ there exists a quantum WCF protocols with bias ϵ.

Mochon exploited operator monotone functions and reversed the construction of point games from protocols. However, he returns non-constructively to EBM transitions and unitaries.

Our Results.

Framework to build a protocol from EBM line transitions
Explicit protocol of bias $1 / 10$; the best was $1 / 6$ by Mochon in '07 and $1 / \sqrt{2}-1 / 2$ by Spekkens and Rudolph in '02

Numerical algorithm for computing unitaries of EBM transitions (arbitrary bias); uses geometry of ellipsoids

Thank you

Reference: A. Singh Arora, J. Roland, and S. Weis, Quantum Weak Coin
Flipping, in Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory of Computing (STOC '19), 2019.

