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Abstract

An exponential family is a manifold of generalized Gibbs state of the form
exp(H)/Tr(exp(H)), where H belongs to a vector space of (possibly
non-commutative) hermitian matrices. Generalized Gibbs states are important in
small-scale thermodynamics, they represent equilibrium states regarding several
conserved quantities that admit novel operations without heat dissipation [1].
Quantum information theory and condensed matter physics consider a space of
local Hamiltonians acting on spins. The entropy distance from this exponential
family is a measure of many-body complexity [2,3,4].

This talk is concerned with the geometry and topology of an exponential family
and its entropy distance [5]. The maximum-entropy inference map parametrizes
the exponential family. This map is continuous in the interior of its domain, the
joint numerical range [6]. We describe the points of discontinuity in terms of open
mapping theorems and eigenvalue crossings. Because of the discontinuity, the
inference map and the entropy distance cannot be approximated through interior
points. Instead, it is necessary to study faces (flat portions on the boundary) of
the joint numerical range. With local Hamiltonians, this requires studying the
faces of the set of quantum marginals.
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Landauer Erasure
According to Landauer, the erasure of one bit of information has an energy cost of
kT log(2), where k ≈ 1.38 · 10−23J/K is the Boltzmann constant and T is the
absolute temperature of a heat bath coupled to the memory.

Theorem (D. Reeb & M. M. Wolf; M. Lostaglio et al. [1])
The states on the combined Hilbert space HM ⊗ HR of the memory and
the reservoir before and after the erasure (unitary evolution) satisfy∑

i≥1 µi ∆Ci ≥ −∆S ,

where the Ci are conserved observables, possibly noncommutative, of the
reservoir, which is initially in the state ρ = e−

∑
i≥1 µiCi /Tr e−

∑
i≥1 µiCi ,

and S(ρ) = Tr ρ log(ρ) is the von Neumann entropy of the memory state.

• Tradeoff between different conserved quantities! Thermal operations without
heat dissipation.

• Motivation to study the manifold of generalized Gibbs states
{e−

∑
i≥1 µiCi /Tr e−

∑
i≥1 µiCi : µi ∈ R}.
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Entropy Distance and Local Hamiltonians

Exponential Families
Let U ⊆ Mn be a vector space of hermitian matrices. The exponential
family associated with U is E = E(U) = {eA/Tr eA : A ∈ U}.

E belongs to the state space D = {ρ ∈ Mn : ρ � 0,Tr(ρ) = 1}.

Entropy Distance
The entropy distance of ρ ∈ D from X ⊆ D is dE(ρ) = infσ∈X S(ρ, σ),
where S(ρ, σ) = Tr ρ(log ρ− log σ)) is the relative entropy.

The entropy distance from E is known as a measure of complexity (N. Ay, Annals of
Probability 30:1, 416 (2002)), especially in the following setting [2,3,4].

Local Hamiltonians
A k-local Hamiltonian is a sum of terms A1 ⊗ · · · ⊗ AN ∈ M⊗N

n , each term
having at most k non-scalar factors Ai [4]. We denote the space of k-local
Hamiltonians by Uk , Ek = E(Uk), and dk(ρ) = dEk (ρ) for states ρ ∈ D.
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Maximum-Entropy Inference Map

Consider the rI-closure cl(E) = {ρ ∈ D : dE(ρ) = 0}.

Theorem (S.W. [5)]
For all A ∈ D + U⊥ there is a unique state πE(A) ∈ (A + U⊥) ∩ cl(E). For
all ρ ∈ D and τ ∈ cl(E) we have

a) S(ρ, τ) = S(ρ, πE(ρ)) + S(πE(ρ), τ), (Pythagorean theorem)

b) dE(ρ) = dcl(E)(ρ) = S(ρ, πE(ρ)). (projection theorem)

• The set πU (D) is the joint numerical range (F. F. Bonsall and J. Duncan, CUP, London,

1971), where πU is the orthogonal projection onto U .

• The map Ψ = πE |πU (D) is the maximum-entropy inference map πU (D)→ D,
which image is Ψ(πU (D)) = cl(E).
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Pictures — Pythagorean Theorem — Joint Numerical Range

πE(ρ)

Example: 3× 3 matrices (S.W. and

A. Knauf, Journal of Mathematical Physics

53:10, 102206 (2012))

7 / 12



Pictures — Pythagorean Theorem — Joint Numerical Range

πE(ρ)

Example: 3× 3 matrices (S.W. and

A. Knauf, Journal of Mathematical Physics

53:10, 102206 (2012))

7 / 12



Pictures — Problem Discontinuity of the Inference Ψ

Note: If the matrices in U
commute, then Ψ is continuous
(O. Barndorff-Nielsen, John Wiley & Sons,

Chichester, 2014; N. Sukumar and

R. J.-B. Wets, SIAM J. Optim. 18:3,

914–925 (2007)).

Example: 3× 3 matrices (S.W. and

A. Knauf, Journal of Mathematical Physics

53:10, 102206 (2012))
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Continuity Conditions

Theorem (S.W., CMP 330:3, 1263 (2014))
For each A ∈ πU (D) the inference map Ψ is continuous at A if and only if
the linear map πU |D is open at Ψ(A).

Theorem (I. M. Spitkovsky and S.W., JMP 59:12, 121901 (2018))
Let U = span(C1,C2) and λ(x1, x2) the smallest eigenvalue of x1C2 + x2C2.

• ∇λ : S1 → ∂πU (D) parametrizes the boundary of the numerical range,

• one-to-one correspondence of C 1-crossings of ϕ 7→ λ(e iϕ) with the curve
of a larger eigenvalue and discontinuities of Ψ at ∇λ(e iϕ),

• if λ(e iϕ) is C 2-nonanalytic at ϕ, then Ψ is discontinuous at ∇λ(e iϕ).

Theorem (L. Rodman et al. [6])
If Ψ is continuous at A ∈ πU (D), then the dimension of the face-function
of πU (D) is lower semi-continuous at A.
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Picture — The Dimension of the Face-Function Jumps Up!

Example by M.-T. Chien and H. Nakazato,

Lin. Alg. Appl. 432:1, 173 (2010);

K. Szymański, S.W., K. Życzkowski,

Lin. Alg. Appl. 545, 148 (2018)

The picture shows the set
{(x1, x2, x3) : xi = Tr ρCi , ρ ∈ D},
where

F1 = 1
2

(
1 0 0
0 0 1
0 1 0

)
,

F2 = 1
2

(
0 0 1
0 0 0
1 0 0

)
,

F3 =
(
0 0 0
0 0 0
0 0 1

)
.
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Algorithms
Question
Develop algorithms that compute the values of the
• maximum-entropy inference map Ψ,
• distance dk from the exponential family Ek of k-local Hamiltonians,
and that tell us how far a point is from a discontinuity.

Algorithms ignoring the discontinuity are known (D.-L. Zhou, Communications in

Theoretical Physics 61:2, 187 (2014); S. Niekamp et al. [3]).

Regarding the discontinuity, we need to take into account the faces of the joint
numerical range πU (D). Concerning local Hamiltonians, πUk (D) is the convex set
of k-party marginals. Even for two-party marginals of three qubits we know quite
little about the set of marginals:

• the extreme points correspond to the pure states except those of the GHZ type
α |000〉+ β |111〉 (N. Linden, S. Popescu, and W. Wootters, PRL 89:20, 207901 (2002); J. Chen,

Z. Ji, B. Zeng, and D. L. Zhou, PRA 86:2, 022339 (2012)),

• maximal faces can be efficiently sampled from the extreme points of the dual
spectrahedron, and can be tested algebraically (S.W. and J. Gouveia, arXiv:2103.08360).
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Thank you for your attention!

These slides were created with LATEX (beamer class and bclogo-package). The graphics
were drawn with Wolfram Mathematica.
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