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Abstract
Models of realistic quantum communication need an energy bound at the source
of a communication channel. A common choice is a bound on the expected value
of an unbounded energy operator. Although this constraint has been applied suc-
cessfully, there are basic questions of functional analysis still open. Here, we prove
a version of Choquet’s theorem, which asserts that every state with bounded
energy is the barycenter of a probability measure supported by pure sates with
bounded energy. This result is an important step forward in the functional analy-
sis of constrained states, as it essentially simplifies definitions of several character-
istics used in quantum information theory.
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Quantum Technology — Information Theory

“[. . . ] the longest distance that single-photons [. . . ] have been sent and detected is 307
km, [. . . ] 500 km is still out of reach. [. . . ] I would be truly surprised if any-one demon-
strates a longer distance during my lifetime.” N. Gisin, Front. Phys. 10:6, 100307 (2015)

Direct communication through optical fiber

“[. . . ] Here we demonstrate entanglement-based QKD between two ground stations sep-
arated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the
need for trusted relays.” J. Yin et al. Nature 582:7813, 501–505 (2020)

QKD using entangled photons emitted from a satellite

Information theory helps to optimize communication tasks:

In order to quantify the capacity of a communication channel, one has to take into ac-
count a tradeoff between the energy expended and the communication achieved.

• T.M. Cover and J. A. Thomas, Elements of Information Theory, 1991

• A. S. Holevo, On quantum communication channels with constrained inputs,
arXiv:quant-ph/9705054 (1997)

Energy-Constraints
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Quantum States, Channels, Entropy
Let H be a separable Hilbert space and T(H) the Banach space of trace-class
operators.

In quantum information theory, a state is an element of the convex set of
density operators

S(H) = {ρ ∈ T(H) | ρ � 0,Tr(ρ) = 1}.

States

By channel Φ : A → B we mean a linear, bounded, trace-preserving, com-
pletely positive map Φ : T(HA) → T(HB). Completely positive means that
the map Φ⊗ Idn is positive for all n = 1, 2, . . . .

Channels

The von Neumann entropy H(ρ) ∈ [0,+∞] of a state ρ ∈ S(H) is the
number H(ρ) = −Tr[ρ log(ρ)].

Entropy
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The Quantum Capacity of a Constrained Channel
The quantum capacity Q(Φ,F ,E ) of the constrained channel Φ : A → B is
the asymptotically optimal rate at which quantum information can be send if the
input states ρ to the composite channel Φ⊗n satisfy Tr(ρF (n)) ≤ nE with energy
observable F (n) = F ⊗ I ⊗ · · · ⊗ I + I ⊗ F ⊗ · · · ⊗ I + . . . + I ⊗ · · · ⊗ I ⊗ F .

Let Tr e−θF <∞ for all θ > 0 (Gibbs hypothesis), and let

supρ∈S(HA):Tr ρF≤E H[Φ(ρ)] <∞. (finite output entropy)

Then the quantum capacity of the constrained channel Φ is

Q(Φ,F ,E ) = limn→∞
1
n Ic(Φ⊗n,F (n), nE ).

Theorem (Wilde and Qi ’18, arXiv:1609.01997)

Ic(Φ,F ,E ) = supρ∈S(HA):Tr ρF≤E
[
H(B)ω − H(RB)ω

]
(coherent information)

• Uniform continuity bounds: Winter arXiv:1712.10267, Shirokov arXiv:1706.00361,
Becker and Datta arXiv:1810.00863
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Generalized Compactness
S(H) is not compact, but µ-compact (Holevo, Shirokov ’04, arXiv:quant-ph/0408176).

Let X be a closed, bounded subset of a separable Banach space and M(X )
the set of Borel probability measures on X ; the barycenter of µ ∈ M(X ) is

b(µ) =

∫
X

x dµ(x);

X is µ-compact if the pre-image under b : M(X ) → conv(X ) is compact
for every compact subset of conv(X ).

µ-Compactness

Let C be a closed, bounded, µ-compact, convex set, and a separable metric
space. Then

C = conv(extC ), (Krein-Milman theorem)

C = b
(
M( extC )

)
. (Choquet theorem)

Theorem 1 (Protasov and Shirokov ’10, arXiv:1002.3610)
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Generalized Affine Constraints

In the sequel, let V be a real vector space and K ⊆ V a convex set. A
generalized affine map on K is a map f : K → R ∪ {+∞} that satisfies

f (λx + µy) = λf (x) + µf (y). x , y ∈ K , λ, µ ≥ 0, λ + µ = 1.

Let ` ∈ N, let f1, f2, . . . , f` be generalized affine maps on K , and let
α1, α2, . . . , α` ∈ R. We define the sublevel set

K` = {x ∈ K : fk(x) ≤ αk ∀k = 1, . . . , `}.

Generalized Affine Maps

Let H be an arbitrary positive operator on H. Let Pn =
∫ n

0 dEH(λ) be the
spectral projector of H corresponding to [0, n], where EH is the spectral
measure of H. The expected value functional of H is the map defined by

S(H)→ [0,+∞], ρ 7→ Tr ρH = limn→∞ Tr(ρHPn).

Expected Value Functional
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Does the Sublevel Set S(H)` Have Mixed Extreme Points?

Consider several expected value functionals f1, f2, . . . , f` : S(H)→ [0,∞].

• The sublevel set S(H)` is closed, as f1, f2, . . . , f` are lower semi-continuous.
Theorem 1 shows that any state in S(H)` is the barycenter of some Borel proba-
bility measure supported by ext(S(H)`).

• This measure would be supported by the closed set of pure states

ext(S(H)`) = S(H)` ∩ extS(H),

if all extreme points of S(H)` were pure states.

Under which conditions is every extreme point of S(H)` a pure state?

Question
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Affine Constraints on the Bloch Ball S(C2)
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The Face Generated by a Point
Problem: ∞-dim. convex sets may lack “interior points” (A. Barvinok, A Course in

Convexity, Providence, R.I: AMS, 2002). We focus on faces generated by points.

A subset E ⊆ K is an extreme subset of K if whenever x = (1 − λ)y + λz
lies in E for some y , z ∈ K and λ ∈ (0, 1), then y and z are also in E . A
face of K is a convex, extreme subset of K . The face of K generated by
x ∈ K , denoted FK (x), is the intersection of all faces of K containing x .

Faces

Let V be a real vector space, K ⊆ V a convex subset, and x ∈ K . Then

aff FK (x) =
{
y ∈ V | ∃ε > 0 : x ± ε(y − x) ∈ FK (x)

}
.

In particular, x lies in the “interior” of FK (x).

Theorem (W., Shirokov ’20, arXiv:2003.14302)

Proof. “⊇”: Every open segment in FK (x) extends to a line in aff FK (x).
We prove “⊆” using the Kuratowski-Zorn lemma.
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Gaps in the Face Dimensions

If the convex set K is replaced with its sublevel set K1, then the dimension of the
face generated by a point may decrease by at most one.

Let x be a point in K1. If the face FK1(x) of K1 generated by x has dimen-
sion m ∈ N0 = {0, 1, 2, . . .}, then the face FK (x) of K generated by x has
dimension m or m + 1.

Theorem

Iterating the theorem, we exploit gaps in the face dimensions of K .

Let K have no face with dimension 1, . . . , `. Then every extreme point of
the sublevel set K` is an extreme point of K .

Corollary
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The Gap Between 0 and 3 in the Face Dimensions of S(H)

The faces of the set of density operators have dimensions 0, 3, 8, . . . , n2−1, . . . ,∞.

Every extreme point of the sublevel set S(H)2 is a pure state.

Corollary

The set of extreme points ext(S(H)2) is closed and is equal to the set of
pure states in S(H)2.

• The set S(H)2 is the closure of the convex hull of ext(S(H)2).

• Any state in S(H)2 is the barycenter of some Borel probability measure
supported by ext(S(H)2).

Krein-Milman and Choquet Theorem
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Maximizing Convex Functions on the Sublevel Set S(H)2

• Let f : S(H)2 → [−∞,∞] be a convex function. If f is either lower
semicontinuous or upper semicontinuous and upper bounded, then

sup{f (ρ) : ρ ∈ S(H)2} = sup{f (ρ) : ρ ∈ ext(S(H)2)}. (1)

• If f is upper semicontinuous and one of the operators defining the func-
tionals fi : ρ 7→ Tr ρHi , i = 1, 2, has a discrete spectrum of finite multiplic-
ity, then S(H)2 is compact and the supremuma in (1) are attained.

Corollary

See the Refs. [1,2] for applications of these results to the Minimal Output En-
tropy and to the Operator E-Norms.
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Thank you for your attention!
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Applications: Minimal Output Entropy I

The minimal output entropy of a channel Φ : A→ B is defined as

Hmin(Φ) = infρ∈S(HA) H(Φ(ρ)) = infϕ∈HA,1 H(Φ(|ϕ〉〈ϕ|)),

where HA,1 is the unit sphere in HA.

Minimal Output Entropy

The additivity of the minimal output entropy, which means that

Hmin(Φ⊗Ψ) = Hmin(Φ) + Hmin(Ψ)

for all channels Φ and Ψ, was disproved by Hasting (’08, arXiv:0809.3972). This is
important, because the additivity of Hmin is equivalent to the additivity of the
Holevo information (Shor ’03, arXiv:quant-ph/0305035). The additivity of the Holevo
information would imply that the classical capacity is C (Φ) = χ(Φ), without the
regularization C (Φ) = limn→∞

1
nχ(Φ⊗n).
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Applications: Minimal Output Entropy II

In studies of an infinite-dimensional channels Φ : A→ B, it is reasonable to
consider the constrained minimal output entropy

Hmin(Φ,G ,E ) = inf
ρ∈S(HA):Tr ρG≤E

H(Φ(ρ)), (2)

where G is a positive operator, the energy observable.

Constrained Minimal Output Entropy

• If dimHA < ∞, then the infimum in (2) can be taken only over pure states
satisfying the condition Tr ρG ≤ E (Memarzadeh, Mancini ’16, arXiv:1605.04525).
Our results prove the analogous assertion for an arbitrary ∞-dim. channel Φ and
for any energy observable G .

• Hmin(Φ̂,G ,E ) = Hmin(Φ,G ,E ) holds for every complementary channel Φ̂, as
H[Φ̂(ρ)] = H[Φ(ρ)] holds for all pure states (A. S. Holevo, Quantum Systems, Channels,

Information, Berlin: De Gruyter, 2019).
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Applications: Operator E-Norms I
The KSW-Theorem (Kretschmann, Schlingemann, Werner ’07, arXiv:0710.2495)
shows that the Stinespring representation is continuous.

Given a completely positive linear map Φ : A → B, there exists a Hilbert
space HR and an operator VΦ : HA → HRB such that Φ(ρ) = TrR VΦρV

∗
φ

for all ρ ∈ T(HA).

Stinespring Theorem

Let G be a grounded Hamiltonian with dense domain. Given E > 0, the operator
E-norm of A ∈ B(HA,HRB) is

‖A‖GE
.

= supρ∈S(HA):Tr ρG≤E
√

TrAρA∗.

Our results show that the operator E-norm is a constrained version of the
operator norm, that is to say, ‖A‖GE = supϕ∈HA,〈ϕ|ϕ〉=1,〈ϕ|G |ϕ〉≤E ‖Aϕ‖.

Corollary
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Applications: Operator E-Norms II

For any completely positive linear maps Φ and Ψ from T(HA) to T(HB),
the following inequalities hold.

‖Φ−Ψ‖G�,E√
‖Φ‖G�,E +

√
‖Ψ‖G�,E

≤ inf
VΦ,VΨ

‖VΦ − VΨ‖GE ≤
√
‖Φ−Ψ‖G�,E ,

where the infimum is over all common Stinespring representations.

Theorem (Shirokov ’18, arXiv:1806.05668)

The theorem improves the original KSW-theorem, which uses the unconstrained
diamond norm on the space of Hermitian-preserving linear maps and the uncon-
strained operator norm on the set of Stinespring operators.
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