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Abstract

Models of realistic quantum communication need an energy bound at the source
of a communication channel. A common choice is a bound on the expected value
of an unbounded energy operator. Although this constraint has been applied suc-
cessfully, there are basic questions of functional analysis still open. Here, we prove
a version of Choquet’s theorem, which asserts that every state with bounded
energy is the barycenter of a probability measure supported by pure sates with
bounded energy. This result is an important step forward in the functional analy-
sis of constrained states, as it essentially simplifies definitions of several character-
istics used in quantum information theory.
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Quantum Technology — Information Theory

Direct communication through optical fiber

“[...] the longest distance that single-photons [...] have been sent and detected is 307
km, [...] 500 km is still out of reach. [...] | would be truly surprised if any-one demon-
strates a longer distance during my lifetime.” N. Gisin, Front. Phys. 10:6, 100307 (2015)

3/20



Quantum Technology — Information Theory

.

Direct communication through optical fiber

“[-..] the longest distance that single-photons [...] have been sent and detected is 307
km, [...] 500 km is still out of reach. [...] | would be truly surprised if any-one demon-
strates a longer distance during my lifetime.” N. Gisin, Front. Phys. 10:6, 100307 (2015)

QKD using entangled photons emitted from a satellite

“[...] Here we demonstrate entanglement-based QKD between two ground stations sep-
arated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the
J. Yin et al. Nature 582:7813, 501-505 (2020)

need for trusted relays.”

~

3/20



Quantum Technology — Information Theory

p

Direct communication through optical fiber

“[-..] the longest distance that single-photons [...] have been sent and detected is 307
km, [...] 500 km is still out of reach. [...] | would be truly surprised if any-one demon-
strates a longer distance during my lifetime.” N. Gisin, Front. Phys. 10:6, 100307 (2015)

~

QKD using entangled photons emitted from a satellite

“[...] Here we demonstrate entanglement-based QKD between two ground stations sep-
arated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the
need for trusted relays.” J. Yin et al. Nature 582:7813, 501-505 (2020)

€

Information theory helps to optimize communication tasks:

p

N .
-@-Energy—Constralnts
In order to quantify the capacity of a communication channel, one has to take into ac-
count a tradeoff between the energy expended and the communication achieved.
e T.M. Cover and J. A. Thomas, Elements of Information Theory, 1991

e A.S. Holevo, On quantum communication channels with constrained inputs,
arXiv:quant-ph/9705054 (1997)
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Quantum States, Channels, Entropy

Let H be a separable Hilbert space and ¥(#) the Banach space of trace-class
operators.

ﬁ States

In quantum information theory, a state is an element of the convex set of
density operators

S(H) ={p e T(H) [ p=0,Tr(p) = 1}.
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Let H be a separable Hilbert space and T(#H) the Banach space of trace-class
operators.

:5 States

In quantum information theory, a is an element of the convex set of

S(H) ={p e T(H) [ p=0,Tr(p) = 1}.

ﬁ Channels

By ® : A — B we mean a linear, bounded, trace-preserving, com-
pletely positive map @ : (Ha) — T(Hg). Completely positive means that
the map ® ® Id, is positive for all n =1,2,....

f! Entropy

The H(p) € [0,+o0] of a state p € S(H) is the
number H(p) = — Tr[plog(p)].
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The Quantum Capacity of a Constrained Channel

The quantum capacity Q(®, F, E) of the constrained channel ® : A — B'is
the asymptotically optimal rate at which quantum information can be send if the
input states p to the composite channel ®®" satisfy Tr(pF(") < nE with energy
observable F(N = F@ @ - @1+ I1@F® @I+ ... +1®@ @ I®F.
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Ie(®, F, E) = SUP e (24,0):Tr pF<E [H(B)., — H(RB).,] (coherent information)

e Uniform continuity bounds: Winter arxiv:1712.10267, Shirokov arxiv:1706.00361,
Becker and Datta arxiv:1810.00863
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S(H) is not compact, but p-compact (Holevo, Shirokov '04, arXiv:quant-ph/0408176).
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S(H) is not compact, but p-compact (Holevo, Shirokov '04, arXiv:quant-ph/0408176).

ﬁgu-Compactness

Let X be a closed, bounded subset of a separable Banach space and M(X)
the set of Borel probability measures on X; the of p € M(X) is

b() = /X x da(x);

X is if the pre-image under b : M(X) — conv(X) is compact
for every compact subset of conv(X).

-‘@’-Theorem 1 (Protasov and Shirokov '10, arxiv:1002.3610)

Let C be a closed, bounded, p-compact, convex set, and a separable metric
space. Then

a

= conv(ext C), (Krein-Milman theorem)

C=b(M(extC)). (Choquet theorem)
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Generalized Affine Constraints

ﬁ Generalized Affine Maps

In the sequel, let V' be a real vector space and K C V a convex set. A
generalized affine map on K is a map f : K — R U {+o0} that satisfies

F(Ax +py) = M(x) +uf(y).  xyeK, Ap>0, A+p=1

Let £ € N, let f1, £, ..., f; be generalized affine maps on K, and let
a1, ao,...,0p € R. We define the sublevel set

Ki={xe K:fi(x) <axVk=1,...,0}.
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on Kisamap f: K— RU{+oo} that satisfies

f(Ax +py) = AM(x) +uf(y). x,yeK, Apu>0, A+p=1.

Let £ € N, let f1, £, ..., f; be generalized affine maps on K, and let
1,00, ...,0p € R. We define the

Ki={xe K:fi(x) <axVk=1,...,0}.

ﬁ Expected Value Functional

Let H be an arbitrary positive operator on H. Let P, = fon dEp(\) be the
spectral projector of H corresponding to [0, n], where Ej is the spectral
measure of H. The of H is the map defined by

&(H) — [0, +od], p— TrpH = lim,_.o Tr(pHP,).
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Does the Sublevel Set G(H), Have Mixed Extreme Points?

Consider several expected value functionals fi, f,...,f; : §(H) — [0, o0].
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Does the Sublevel Set G(H), Have Mixed Extreme Points?

Consider several expected value functionals fi, f,...,f; : §(H) — [0, o0].

e The sublevel set G(H), is closed, as f1, f», ..., f; are lower semi-continuous.
Theorem 1 shows that any state in G(H), is the barycenter of some Borel proba-
bility measure supported by ext(&(H).).

e This measure would be supported by the closed set of pure states
ext(S(H)e) = S(H), Next S(H),

if all extreme points of &(H), were pure states.

? Question

| Under which conditions is every extreme point of &(#), a pure state?
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The Face Generated by a Point

Problem: co-dim. convex sets may lack “interior points” (A. Barvinok, A Course in
Convexity, Providence, R.I: AMS, 2002). We focus on faces generated by points.
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ﬁ Faces

A subset E C K is an extreme subset of K if whenever x = (1 — \)y + Az
lies in E for some y,z € K and A € (0,1), then y and z are also in E. A
face of K is a convex, extreme subset of K. The face of K generated by

x € K, denoted Fi(x), is the intersection of all faces of K containing x.

-\@’-Theorem (W., Shirokov '20, arxiv:2003.14302)

Let V be a real vector space, K C V a convex subset, and x € K. Then

In particular, x lies in the “interior” of Fx(x).

aff Fk(x) ={y € V| e > 0: x L e(y — x) € Fx(x)}.

Proof. "2" Every open segment in Fi(x) extends to a line in aff Fx(x).
We prove “C" using the Kuratowski-Zorn lemma.
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Gaps in the Face Dimensions

If the convex set K is replaced with its sublevel set K7, then the dimension of the
face generated by a point may decrease by at most one.

-\@’-Theorem

Let x be a point in Kj. If the face Fi, (x) of K1 generated by x has dimen-
sion m € Ng = {0,1,2,...}, then the face Fx(x) of K generated by x has
dimension m or m+ 1.
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If the convex set K is replaced with its sublevel set K7, then the dimension of the
face generated by a point may decrease by at most one.

-\@’-Theorem

Let x be a point in Kj. If the face Fi, (x) of K1 generated by x has dimen-
sion m € Ng = {0,1,2,...}, then the face Fx(x) of K generated by x has
dimension m or m+ 1.

Iterating the theorem, we exploit gaps in the face dimensions of K.

-@'—Corollary

Let K have no face with dimension 1,...,¢. Then every extreme point of
the sublevel set K is an extreme point of K.
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The Gap Between 0 and 3 in the Face Dimensions of G(H)

The faces of the set of density operators have dimensions 0,3,8,...,n%>—1,...,00.
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The Gap Between 0 and 3 in the Face Dimensions of G(H)

The faces of the set of density operators have dimensions 0,3,8,...,n%>—1,...,00.

-‘@'—Corollary

| Every extreme point of the sublevel set G(# ), is a pure state.

-‘@’-Krein—Milman and Choquet Theorem

The set of extreme points ext(S(#H)2) is closed and is equal to the set of
pure states in S(H)o».

o The set G(H)2 is the closure of the convex hull of ext(&(H)2).

e Any state in G(H ), is the barycenter of some Borel probability measure
supported by ext(G(H),).
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Maximizing Convex Functions on the Sublevel Set &(H),

-@'—Corollary

oletf : S(H)2 — [—00,00] be a convex function. If f is either lower
semicontinuous or upper semicontinuous and upper bounded, then

sup{f(p) : p € &(H)2} = sup{f(p) : p € ext(S(H))}. (1)
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-\@'-Corollary

oletf : S(H)2 — [—00,00] be a convex function. If f is either lower
semicontinuous or upper semicontinuous and upper bounded, then

sup{f(p) : p € &(H)2} = sup{f(p) : p € ext(S(H))}. (1)

o If f is upper semicontinuous and one of the operators defining the func-
tionals f; : p — TrpH;, i = 1,2, has a discrete spectrum of finite multiplic-
ity, then &(#)2 is compact and the supremuma in (1) are attained.

See the Refs. [1,2] for applications of these results to the Minimal Output En-
tropy and to the Operator E-Norms.
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Thank you for your attention!



Appendix with Applications



Applications: Minimal Output Entropy |

ﬁMinimaI Output Entropy
The minimal output entropy of a channel ® : A — B is defined as

Humin(®) = inf o (200) H(P(p)) = infoen, . H(®(lpXel)),

where # 41 is the unit sphere in Ha.
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The minimal output entropy of a channel ® : A — B is defined as

Humin(®) = inf o (200) H(P(p)) = infoen, . H(®(lpXel)),

where # 41 is the unit sphere in Ha.

The additivity of the minimal output entropy, which means that
Hmin((b ® \U) = Hmin(q)) + Hrnin(w)

for all channels ® and W, was disproved by Hasting ('08, arxiv:0809.3972). This is
important, because the additivity of H,,;, is equivalent to the additivity of the
Holevo information (Shor '03, arxXiv:quant-ph/0305035). The additivity of the Holevo
information would imply that the classical capacity is C(®) = x(®), without the
regularization C(®) = lim,_,o0 2x(®").
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Applications: Minimal Output Entropy Il

ﬁConstrained Minimal Output Entropy

In studies of an infinite-dimensional channels ® : A — B, it is reasonable to
consider the constrained minimal output entropy

in(®, G, E) = inf H(®(p)), 2
Hunin ( ) e s (®(p)) (2)

where G is a positive operator, the energy observable.
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where G is a positive operator, the energy observable.

o If dim#Ha < o0, then the infimum in (2) can be taken only over pure states
satisfying the condition Tr pG < E (Memarzadeh, Mancini '16, arxiv:1605.04525).
Our results prove the analogous assertion for an arbitrary co-dim. channel ® and
for any energy observable G.

° I-[min(é, G,E) = Hunin(®, G, E) holds for every complementary channel ®, as
H[‘D(p)] = H[q)(p)] holds for all pure states (A S. Holevo, Quantum Systems, Channels,
Information, Berlin: De Gruyter, 2019).
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The KSW-Theorem (Kretschmann, Schlingemann, Werner '07, arXiv:0710.2495)
shows that the Stinespring representation is continuous.
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ﬁStinespring Theorem

Given a completely positive linear map ® : A — B, there exists a Hilbert
space Hg and an operator Vg : Ha — Hpgg such that ®(p) = Trg V¢pV¢’;
for all p € T(Ha).

Let G be a grounded Hamiltonian with dense domain. Given E > 0, the operator
E-norm of A € B(Ha, Hrs) is

”AHE = supPEG(HA):Tr/)GSE TrApA*.

-@'—Corollary

Our results show that the operator E-norm is a constrained version of the
. G
operator norm, that is to say, [|Al|g = SUP e, (ol0)=1,(0|G|0)<E |AL]]-
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Applications: Operator E-Norms ||

_\@’_Theorem (Shirokov '18, arxiv:1806.05668)

For any completely positive linear maps ® and W from T(H4) to T(Hg),
the following inequalities hold.

I© — V|5

< inf |[Ve — WIIE < /Il — VS,
JIOlSe +/IvISe — ot

where the infimum is over all common Stinespring representations.
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_\@’_Theorem (Shirokov '18, arxiv:1806.05668)

For any completely positive linear maps ® and W from T(H4) to T(Hg),
the following inequalities hold.

I© — V|5

< inf |[Ve — WIIE < /Il — VS,
JIOlSe +/IvISe — ot

where the infimum is over all common Stinespring representations.

The theorem improves the original KSW-theorem, which uses the unconstrained
diamond norm on the space of Hermitian-preserving linear maps and the uncon-
strained operator norm on the set of Stinespring operators.
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