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ABSTRACT
We investigate weak coin flipping, a fundamental cryptographic

primitive where two distrustful parties need to remotely establish a

shared random bit. A cheating player can try to bias the output bit

towards a preferred value. For weak coin flipping the players have

known opposite preferred values. A weak coin-flipping protocol

has a bias ϵ if neither player can force the outcome towards their

preferred value with probability more than
1

2
+ϵ . While it is known

that all classical protocols have ϵ = 1

2
, Mochon showed in 2007

that quantumly weak coin flipping can be achieved with arbitrarily

small bias (near perfect) but the former best known explicit protocol

has bias 1/6 (also due to Mochon, 2005). We propose a framework

to construct new explicit protocols achieving biases below 1/6.

In particular, we construct explicit unitaries for protocols with

bias down to 1/10. To go lower, we introduce what we call the

Elliptic Monotone Align (EMA) algorithm which, together with the

framework, allows us to construct protocols with arbitrarily small

biases.
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tographic protocols; Quantum information theory;

KEYWORDS
cryptographic primitive, two party secure, quantum cryptography,

quantum information

ACM Reference Format:
Atul Singh Arora, Jérémie Roland, and Stephan Weis. 2019. Quantum Weak

Coin Flipping. In Proceedings of the 51st Annual ACM SIGACT Symposium
on the Theory of Computing (STOC ’19), June 23–26, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3313276.3316306

1 INTRODUCTION
Coin flipping is a fundamental cryptographic primitive wherein two

distrustful and remote players wish to generate a shared unbiased

random bit through an exchange of messages, without involving

a third party. The primitive must prevent the outcome from being
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biased towards any specific value when an honest player plays

against a cheating adversary. For weak coin flipping (WCF), the

players have known opposite preferences. A WCF protocol has bias

ϵ if it is the smallest number such that neither player can force their

desired outcome with probability more than
1

2
+ ϵ . For strong coin-

flipping there are no a priori preferred values and the bias is defined

similarly. Restricting to classical resources, neither weak nor strong

coin flipping is possible under information-theoretic security, as

there always exists a player [7] who can force any outcome with

probability 1. However, in a quantum world, strong coin flipping

protocols with bias strictly less than
1

2
have been found and the

best known explicit protocol has bias
1

4
[3]. Nevertheless, Kitaev

showed a lower bound of
1√
2

− 1

2
for the bias of any quantum strong

coin flipping, so an unbiased protocol is not possible.

As for weak coin flipping, the former best known explicit pro-

tocol—the Dip Dip Boom protocol—is due to Mochon [11] and

has bias 1/6. In a breakthrough result, he even proved the exis-

tence of a quantum weak coin-flipping protocol with arbitrarily

low bias ϵ > 0, hence showing that near-perfect weak coin flipping

is theoretically possible [12]. This fundamental result for quantum

cryptography, unfortunately, was proved non-constructively, by

elaborate successive reductions (80 pages) of the protocol to dif-

ferent versions of so-called point games, a formalism introduced

by Kitaev [10] in order to study coin flipping. Consequently, the

description of the protocol whose existence is proved is lost. A sys-

tematic verification of this by independent researchers recently led

to a simplified proof [2] (only 50 pages) but eleven years later, an ex-

plicit weak coin-flipping protocol is still unknown, despite various

expert approaches ranging from the distillation of a protocol using

the proof of existence to numerical search [14, 15]. Further, weak

coin flipping provides, via black-box reductions, optimal protocols

for strong coin flipping [5], bit commitment [6] and a variant of

oblivious transfer [4] (fundamental cryptographic primitives). It is

also used to implement other cryptographic tasks such as leader

election [8] and dice rolling [1].

We construct a framework that allows us to convert simple point

games (i.e. corresponding to known protocols) into explicit quan-

tum protocols defined in terms of unitaries and projectors. We use

the said framework to convert Mochon’s bias 1/10 point game

into its corresponding explicit protocol finally improving upon

Mochon’s Dip Dip Boom protocol (bias 1/6; see [11]).

Our second contribution, the Elliptic Monotone Align (EMA) al-

gorithm, can provably find the unitaries required for implementing

protocols with arbitrary biases, including the ones with ϵ → 0.

Many proofs have been omitted from this extended abstract and

can be found in the full version of the paper.
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Figure 1: Every Weak Coin Flipping protocol can be ex-
pressed in this general form.

2 KITAEV’S FORMALISMS AND MOCHON’S
GAMES | STATE OF THE ART

Let us start with noting two features of weak coin flipping. First,

we say a player wins if they get their preferred value. This makes

sense, as the players have opposite preferred values. Second, we

note that there are four situations which can arise in a weak coin

flipping scenario of which three are of interest. Let us denote by

HH the situation where both Alice and Bob are honest, i.e. follow

the protocol. In this situation we want the protocol to be such

that both Alice and Bob (a) win with equal probability and (b) are

in agreement with each other. In the situation HC where Alice is

honest and Bob is cheating, the protocol must protect Alice from a

cheating Bob. In this situation, a cheating Bob tries to convince an

honest Alice that he has won. The probability that Bob wins using

his best cheating strategy is denoted by P∗B where the subscript

identifies the cheating player, Bob in this case. The CH situation

where Bob is honest and Alice is cheating naturally points us to

the corresponding definition of P∗A. The situation CC where both

players are cheating will not be of interest to us as nothing can

be said which depends on the protocol. This is because nobody is

following the protocol.

A trivial example of a weak coin flipping protocol is where Al-

ice flips a coin and reveals the outcome to Bob over the phone. A

cheating Alice can simply lie and always win against an honest Bob

which means P∗A = 1. On the other hand, a cheating Bob can not do

anything to convince Alice that he has won, unless it happens by

random chance on the coin flip. This corresponds to P∗B =
1

2
. The

bias of the protocol is max[P∗A, P
∗
B ]−

1

2
which for this naïve protocol

amounts to
1

2
, the worst possible. Manifestly, constructing proto-

cols where one player is protected is nearly trivial. Constructing

protocols where neither player is able to cheat (against an honest

player) is the real challenge.

Given aWCF protocol it is not a priori clear how the best success

probability of a cheating player, denoted by P∗A/B , should be com-

puted as the strategy space can be dauntingly large. It turns out that

all quantum WCF protocols can be defined using the exchange of a

message register interleaved with the players applying the unitaries

Ui locally (see Figure 1) until a final measurement, say ΠA denoting

Alice won and ΠB denoting Bob won, is made in the end. The state

at each step is called the honest state, and is denoted by |ψi ⟩, when
both players follow the protocol. Hence, every WCF protocol is

specified by the initial state |ψ0⟩ and the operators {Ui },ΠA,ΠB .

Computing the cheating probability P∗A reduces to the semi-definite

program (SDP) of maximizing the objective functional tr(ΠAρ) over
the final state ρ of Bob’s system, subject to the constraint that Bob is

honest (follows the protocol). An analogous SDP can be written for

computing P∗B . Using SDP duality one can turn this maximization

problem over cheating strategies into a minimization problem over

dual variables ZA/B . Any dual feasible assignment then provides an

upper bound on the cheating probabilities P∗A/B . SDPs are usually

easy to handle but in this case, there are two SDPs, and we must

optimise both simultaneously (see Section 1 of [2]). Note that here

we assume the protocol is known and we are trying to find bounds

on P∗A and P∗B . However, our goal was to find good protocols. So

what we would like is a formalism which allows us to do both,

construct protocols and find the associated P∗A and P∗B . Kitaev and
Mochon defined a formalism, which distils out the relevant mathe-

matical structure and can be used to prove the existence of protocols
together with upper bounds on P∗A and P∗B , bringing us significantly
closer to the final goal of constructing good protocols.

Kitaev converted this problem aboutmatrices (Z s, ρs andU s) into

a problem about points on a plane, which Mochon called Kitaev’s

Time Dependent Point Game (TDPG) formalism.

Definition 1 (TDPG). A frame is a probability distribution on

the non-negative quadrant of the plane supported at finitely many

points. A Time Dependent Point Game (TDPG) is a sequence of

frames of which the first frame is the uniform distribution on the

points [0, 1] and [1, 0] and the last frame consists of a single point

[β,α] (with weight 1). All pairs of consecutive frames, transitions,
obey the following rules.

Only points along a line (either horizontal or vertical) can change.

Consider a given frame and focus on a set of points that fall on this

vertical (or horizontal) line. Let the y coordinate (or x coordinate)

of the ith point be given by zдi and the weight be given by pдi . Let
zhi and phi denote the corresponding quantity in the subsequent

frame. Then, the following conditions must hold

(1) the probabilities are conserved, viz.

∑
i pдi =

∑
i phi

(2) for all λ > 0∑
i

λzдi
λ + zдi

pдi ≤
∑
i

λzhi
λ + zhi

phi . (1)

More precisely, Kitaev showed that for all α, β > 0 the existence

of a WCF protocol together with its dual variables {Zi } certifying
P∗A ≤ α, P∗B ≤ β is equivalent to the existence of a TDPG with

final point [β,α] (see Theorem 4 and 5 of [2]). The objective of the

protocol designer therefore is to get this end point as close to the

origin as possible by transitioning through intermediate frames (see

Figure 2) while obeying the aforementioned rules. These rule and
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Figure 2: Point game corresponding to the Weak Coin Flip-
ping over the phone protocol.

the points in the frames, in fact, arise from the dual SDP variables

ZA/B . Just as the state ρ evolves through the protocol, so do the

dual variables ZA/B . The points and their weights in the TDPG are

exactly the eigenvalue pairs of ZA/B with the probability weight

assigned to them by the honest state |ψ ⟩ at a given point in the

protocol. Given an explicit WCF protocol and a feasible assignment

for the dual variables witnessing a given bias, it is straightforward to

construct the TDPG. However, going backwards, constructing the

WCF dual from a TDPG is non-trivial and no general construction

was known.

Our main contribution is precisely to this part. We construct a

framework which allows for a ready conversion of simple TDPGs

into explicit protocols, and once supplemented with the EMA al-

gorithm, it can convert any TDPG into its corresponding protocol.

Mochon’s breakthrough result was to define a family of games
1

with bias ϵ = 1

4k+2
(see Section 5 of either [2, 12]). Here k encodes

the number of points that are involved in the non-trivial step (for

k = 1 it reduces to a version of the Dip Dip Boom (bias 1/6) proto-

col). Combining this family of point games with the our results—the

framework and the EMA algorithm—one can (algorithmically) con-

struct quantum weak coin flipping protocols with arbitrarily small

biases.

As this point game formalism is the cornerstone of the analysis,

we simplify the rules further and then apply them to construct a

simple example game. Later, we convert this example game into

an explicit protocol using our framework. If we restrict ourselves

to transitions involving only one initial and one final point, the

second condition reduces to zд ≤ zh (we suppressed the subscript).

This is called a raise. It means that we can always increase the

coordinate of a single point. What about going from one initial

point to many final points (note that the points before and after

must lie along either a horizontal or a vertical line)? The second

condition in this case becomes 1/zд ≥ ⟨1/zh⟩, that is the harmonic

mean of the final points must be greater than or equal to that of

the initial point, where ⟨f (zh )⟩ :=
(∑

i f (zhi )phi
)
/

(∑
j phj

)
. This

is called a split. Finally, we can ask: What happens upon merging

many points into a single point? The second condition becomes〈
zд

〉
≤ zh , that is the final position must not be smaller than the

average initial position (where

〈
f (zд)

〉
is analogously defined).

This is called a merge. While these three transitions/moves do not

exhaust the set of moves, they are enough to construct games that

almost achieve the bias 1/6. Let us construct a simple game as an

1
Mochon describes his games in Kitaev’s Time Independent Point Game (TIPG) formal-

ism but it is straightforward to go back from a TIPG to a TDPG.

example. We start with the initial frame and raise the point [1, 0]

along the vertical to [1, 1] (see Figure 2). We know this move is

allowed as it is just a raise. Next we merge the points [0, 1] with

[1, 1] using a horizontal merge. The x-coordinate of the resulting
point can at best be

1

2
.0 + 1

2
.1 = 1

2
where we used the fact that

both points have weight 1/2. Thus we end up with a single point at

[ 1

2
, 1]with all the weight. Kitaev’s formalism tells us that there must

exist a protocol which yields P∗A = 1 while P∗B =
1

2
. This, however,

is the phone protocol that we started our discussion with! It is a

neat consistency check but it yields a trivial bias. This is because

we did not use the split. If we use a split once, we can already

obtain a game with P∗A = P∗B =
1√
2

by appropriately matching

the weights (see Section 3.2.1 of [12]). Protocols corresponding to

this bias were found by various researchers [9, 13, 18] long before

this formalism was known. In fact, the bias of the said weak coin

flipping protocols, ϵ = 1√
2

− 1

2
, is exactly the lower bound for strong

coin flipping. The technique used to bound strong coin flipping fails

for weak coin flipping and the matter was not resolved for a while.

These protocols held the record for being the best known weak coin

flipping protocols until Mochon progressively showed that if we

use multiple splits wisely at the beginning followed by a raise, one

simply needs to use merges thereafter to obtain a game with bias

approaching 1/6, which corresponds to his Dip Dip Boom protocol.

The Dip Dip Boom protocol is actually a family of protocols which

in the limit of infinite rounds of communication yields bias 1/6.

Going lower, therefore, is not a straight forward extension and we

need to use moves which can not be decomposed into the three

basic ones: splits, merges and raises.

3 A FRAMEWORK | FIRST CONTRIBUTION
We first describe our framework for converting a TDPG into an

explicit protocol. We start by defining a ‘canonical form’ for any

given frame of a TDPG. This allows one to write the WCF dual

variables, Zs, and the honest state |ψ ⟩ associated with each frame

of the TDPG (see Definition 4). We define a sequence of quantum

operations, unitaries and projections, which allow Alice and Bob to

transition from the initial frame to the final frame. It turns out that

there is only one non-trivial quantum operation in the sequence

which we leave partially specified for the moment. This means that

we know that the unitary should send the honest initial state to

the honest final state. However the action of the unitary on the

orthogonal space, which intuitively is what would bestow on it the

cheating prevention/detection capability, is obtained as a non-trivial

constraint. Using the SDP formalism we write the constraints at

each step of the sequence on the Zs and show that they are indeed

satisfied (see Subsection A.1 for details).

Theorem 2 (TEF constraint (simplified)). If a unitary matrix U
acting on the space span{|д1⟩ , |д2⟩ . . . , |h1⟩ , |h2⟩ . . . } satisfying the
constraints

U |v⟩ = |w⟩ ,∑
i
xhi |hi ⟩ ⟨hi | −

∑
i
xдi EhU |дi ⟩ ⟨дi |U

†Eh ≥ 0 (2)

can be found for every move/transition of a TDPG then an ex-
plicit protocol with the corresponding bias can be obtained using the
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TDPG–to–Explicit–protocol Framework (TEF), where {|дi ⟩}, {|hi ⟩}
are orthonormal vectors and if the transition is horizontal

• the initial points have xдi as their x-coordinate and pдi as
their corresponding probability weight,

• the final points have, similarly, xhi as their x-coordinate and
phi as their corresponding probability weight

• Eh is a projection onto the span {|hi ⟩} space,

• |v⟩ =
∑
i
√
pдi |дi ⟩ /

√∑
j pдj , |w⟩ =

∑
i
√
phi |hi ⟩ /

√∑
j phj

and if the transition is vertical, thexдi andxhi become they-coordinates
yдi and yhi with everything else unchanged.

Note that the TDPG already specifies the coordinates xhi , xдi
and the probabilities phi ,pдi which satisfy, Equation (1), the scalar

condition. Our task therefore reduces to finding the correctU which

satisfies the aforesaid matrix constraints. It is this general problem

that is solved by our EMA algorithm which we describe later.

Given such a unitary U acting on the space span{|д1⟩ , |д2⟩ . . .

|h1⟩ , |h2⟩ . . . } one can construct a unitary,U
(2)

AM , acting non-trivially

on the space span{|д1д1⟩AM , |д2д2⟩AM . . . , |h1h1⟩AM , |h2h2⟩AM ,

. . . } by mapping |дi ⟩ → |дiдi ⟩AM , |hi ⟩ → |hihi ⟩AM and as iden-

tity otherwise. We now informally describe how to convert a TDPG

into an explicit protocol. It suffices to show what a transition

from a given frame to the next frame corresponds to in terms

of the protocol. In this discussion, we refer to them as the ini-

tial frame and the final frame. Assume that the corresponding

non-trivial U
(2)

AM is known. As we saw, a given transition would

either be horizontal or vertical. We assume it is horizontal with-

out loss of generality
2
. We label the points that do not partici-

pate in this horizontal transition, i.e. remain unchanged in both

frames, by k1,k2 . . . in both frames. The points in the initial frame

involved in this transition are labelled д1,д2 . . . and the ones in

the final frame are labelled h1,h2 . . . . All the points are now la-

belled. We denote the coordinates of the final points by xh1
, xh2
. . .

and the probability weights by ph1
,ph2
. . . . We similarly define

xдi ,pдi and xki ,pki . The Hilbert space of interest is given by H :=

span{|k1⟩ , |k2⟩ . . . , |д1⟩ , |д2⟩ . . . , |h1⟩ , |h2⟩ . . . , |m⟩}where each vec-

tor is assumed orthonormal (|m⟩ is just an idle state in which the

message register is assumed to be initially and returned to finally).

We assume that Alice’s register, Bob’s register and the message reg-

ister each have dimension at least as large as dim(H). The state (by

state in this discussion, we mean the honest state) corresponding

to the initial frame is assumed to have the form��ψ(1)〉 = (∑
i

√
pдi |дiдi ⟩AB +

∑
i

√
pki |kiki ⟩AB

)
⊗ |m⟩M .

Bob: Assume Bob has the message register. He applies the condi-

tional swap U
SWP{ ®д,m }

BM where U
SWP{ ®д,m }

BM swaps conditionally on

both registers being in the subspace span{|д1⟩ , |д2⟩ . . . , |m⟩}. The

state after this operation is��ψ(2)〉 =∑
i

√
pдi |дiдi ⟩AM ⊗ |m⟩B +

∑
i

√
pki |kiki ⟩AB ⊗ |m⟩M .

2
Mochon’s point games have a repeating structure he calls a “ladder”. Corresponding

to each k he constructs a family of point games parametrised by the number of points

in this ladder. The game approaches the bias ϵ = (4k + 2)−1
as the number of points

is increased (the value is reached in the limit of infinite points). Consequently, we

consider a finite set of points in the transition.

He then sends the message register to Alice.

Alice: Alice applies the non-trivial unitary U
(2)

AM on her local

register and the message register. She then measures {E(2), I−E(2)}

where E(2) := (
∑

|hi ⟩ ⟨hi | +
∑

|ki ⟩ ⟨ki |)A ⊗ IM . The state at this

point is��ψ(3)〉 =∑
i

√
phi |hihi ⟩AM ⊗ |m⟩B +

∑
i

√
pki |kiki ⟩AB ⊗ |m⟩M .

If the outcome corresponds to the latter, she declares herself to be

the winner. Otherwise she sends the message register back to Bob.

Bob: Bob again applies a conditional swapU
SWP{ ®h,m }

BM followed

by a measurement corresponding to {E(3), I − E(3)} where E(3) :=

(
∑
i |hi ⟩ ⟨hi | +

∑
i |ki ⟩ ⟨ki |)B ⊗ IM . The final state is��ψ(4)〉 = (∑

i

√
phi |hihi ⟩AB +

∑
i

√
pki |kiki ⟩AB

)
⊗ |m⟩M .

If the outcome corresponds to I − E(3), Bob declares himself the

winner.

As the final state is in the same form as the initial state, one can

progressively build the sequence corresponding to the complete

protocol. Once the entire sequence is known, one must reverse the

order of all the operations to obtain the final protocol. Note that the

message register is initially decoupled, it then gets entangled, and

finally it emerges decoupled again. This simplifies the analysis (and

also entails that one need not keep the message register coherent

for the duration of the protocol; keeping it coherent for each round

individually is sufficient).

Let us try to apply this procedure to our example game (see

Figure 2).We label the points in the first frame asд1 andд2. The state

is given by
1√
2

(
|д1д1⟩AB + |д2д2⟩AB

)
⊗ |m⟩M . (This should make

it clear that the order is reversed here because we want to end with

an EPR like state so that when Alice and Bob make a measurement,

they agree on a random bit.) We simply claim for the moment that

raising does not require Alice and Bob to do anything. This means

that we can consider the second frame with the same labels. We

now apply the merge transition by using the aforesaid recipe, where

Bob applies a swap, sends the message register to Alice, she applies

U
(2)

AM and the projector, returns the message register to Bob and he

applies the final swap and measurement. We continue to assume

we are given the correctU
(2)

AM that implements the merge step. The

state one obtains after the application of these unitaries turns out

to be |h1h2⟩AB ⊗ |m⟩M . (This looks like the state we should start

with, completely unentangled. This is intuitively why the actual

protocol is a reversed version of what we have.) Our procedure

can be applied to any point game, granted the non-trivial unitary

U (2)
can be found. The central issue was that there was no general

recipe known for constructingU (2)
s.

To address this we can prove that what we call the Blinkered

Unitary satisfies the required constraints for both the split and

merge moves (see Subsection A.2). It is defined as

U
blink

= |w⟩ ⟨v | + |v⟩ ⟨w | +
∑
i

|vi ⟩ ⟨vi | +
∑
i

|wi ⟩ ⟨wi | (3)

where |v⟩, {|vi ⟩} and |w⟩, {|wi ⟩} are orthonormal vectors span-

ning the {|дi ⟩} and {|hi ⟩} space respectively. With these the former
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best protocol (bias 1/6) can already be derived from its TDPG, in a

manner analogous to the one used for the example game. This was

not known (to the best of our knowledge), even though the proto-

col itself was separately known and analysed. We next study the

family of bias 1/10 TDPGs and isolate the precise moves required

to implement it (see Subsection A.3). Let nд → nh denote a move

from nд initial points to nh final points. While the bias 1/6 games

used a 2 → 1 merge as its key move, the bias 1/10 games use a

combination of 3 → 2 and 2 → 2 moves (these can not be produced

by a combination of merges and splits, as was pointed out earlier).

We give analytic expressions for these unitaries and show that they

satisfy the required constraints (see Subsection A.3). In particular,

we show that for 3 → 2 moves with xд1
< xд2

< xд3
and xh1

< xh2

U3→2 = |w⟩ ⟨v | + |w1⟩
〈
v ′

1

�� + ��v ′
2

〉 〈
v ′

2

�� + ��v ′
1

〉
⟨w1 | + |v⟩ ⟨w | (4)

satisfies the required constraints (under some further technical

conditions which are satisfied by the 1/10 games of interest), where

|v⟩ =

√
pд1

|д1⟩ +
√
pд2

|д2⟩ +
√
pд3

|д3⟩

Nд
,

|v1⟩ =

√
pд3

|д2⟩ −
√
pд2

|д3⟩

Nv1

,

|v2⟩ =

−
(pд

2
+pд

3
)

√pд
1

|д1⟩ +
√
pд2

|д2⟩ +
√
pд3

|д3⟩

Nv2

and

|w⟩ =

√
ph1

|h1⟩ +
√
ph2

|h2⟩

Nh
, |w1⟩ =

√
ph2

|h1⟩ −
√
ph1

|h2⟩

Nh

are normalised vectors (this fixes the normalisation factors) which

we use to define��v ′
1

〉
= cosθ |v1⟩ + sinθ |v2⟩ ,

��v ′
2

〉
= sinθ |v1⟩ − cosθ |v2⟩

where cosθ is obtained by solving

√
ph1

ph2

N 2

h

(
xh1

− xh2

)
− cosθ

√
pд2

pд3

NдNv1

(
xд2

− xд3

)
− sinθ

〈
xд

〉 Nд

Nv2

= 0

and choosing the solution which is closer to 1. Similarly we give an

explicit unitary corresponding to the second move, i.e. the 2 → 2

move. For the second move, i.e. the 2 → 2 move with xд1
< xд2

and xh1
< xh2

, we show that

U2→2 = |w⟩ ⟨v |+(α |v⟩ + β |w1⟩) ⟨v1 |+|v⟩ ⟨w |+(β |v⟩ − α |w1⟩) ⟨w1 |

satisfies the required constraints (again, under further technical

conditions which are satisfied by the 1/10 games of interest) where

|v⟩ =
1

Nд

(√
pд1

|д1⟩ +
√
pд2

|д2⟩

)
,

|v1⟩ =
1

Nд

(√
pд2

|д1⟩ −
√
pд1

|д2⟩

)
and

|w⟩ =
1

Nh

(√
ph1

|h1⟩ +
√
ph2

|h2⟩

)
|w1⟩ =

1

Nh

(√
ph2

|h1⟩ −
√
ph1

|h2⟩

)
.

Figure 3:
Top: The ellipsoids correspond to the diagonal matrices Xд
and Xh . The vectors |w⟩ and |v⟩ indicate only the direction.
Bottom: The larger ellipsoid is now rotated to correspond to
OXдO

T . The point of contact is along the vector |w⟩ = O |v⟩.

Further, α, β ∈ R are such that α2 + β2 = 1 and

β =

√
ph1

ph2

pд1
pд2

(xh1
− xh2

)

(xд1
− xд2

)
.

This lets us, in effect, convert Mochon’s family of bias 1/10 games

into explicit protocols, finally breaking the 1/6 barrier. Mochon’s

games achieving lower biases correspond to larger unitary matrices.

Consequently, this approach based on guessing the correct form of

the solution becomes untenable.

4 EMA ALGORITHM | SECOND
CONTRIBUTION

To go lower than 1/10 we use our Elliptic Monotone Align (EMA)

algorithm which we now describe. Note that if we neglect the pro-

jector in Equation (2), we can express it as Xh ≥ UXдU
†
where

Xh,Xд are diagonal matrices with positive entries. One can re-

strict to orthogonal matrices without loss of generality (see Sub-

section B.1). Once we restrict to real numbers, the set of vectors

EXh := {|u⟩ | ⟨u |Xh |u⟩ = 1} describe the boundary of an ellipsoid
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as

∑
i u

2

i /(x
−1

hi
) = 1 (note xhi is fixed here and ui is the variable).

Similarly EOXдOT represents a rotated ellipsoid whereO is orthog-

onal (see Figure 3). Geometrically, the aforesaid inequality means

that EXh ellipsoid is contained in the EOXдOT ellipsoid (the order

gets reversed; see Subsection B.2).

Recall from Theorem 2 that the orthogonal matrix also has the

propertyO |v⟩ = |w⟩. Imagine that in addition, we have ⟨w |Xh |w⟩ =

⟨v |Xд |v⟩ which in terms of the point game means that the average

is preserved (as was the case for merge). In terms of the ellipsoids,

it means that the ellipsoids touch along the |w⟩ direction. More

precisely, the point |c⟩ := |w⟩ /
√
⟨w |Xh |w⟩ belongs to both EXh

and EOXдOT . Since the inequality tells us the smaller h ellipsoid is

contained inside the larger д ellipsoid, and we now know that they

touch at the point |c⟩, we conclude that their normals evaluated at

|c⟩ must be equal. Further, we can conclude that the inner ellipsoid

must be more curved than the outer ellipsoid.

Mark the point |c⟩ on the EOXдOT ellipsoid. Now imagine that

the EXд ellipsoid is rotated to the EOXдOT ellipsoid (see Figure 3).

The normal at the marked point must be mapped to the normal of

EXh at |c⟩. To evaluate the normals
3 |nh⟩ on EXh at |c⟩ and

��nд〉 on
EXд at the marked point, one only needs to know Xh,Xд, |v⟩ and

|w⟩. Complete knowledge of O is not required and yet we can be

sure thatO
��nд〉 = |nh⟩ which meansO must have a term |nh⟩

〈
nд

��
.

In fact, one can even evaluate the curvature from the aforesaid quan-

tities (see Subsection B.3). It so turns out that when this condition is

expressed precisely, it becomes an instance of the same problem we

started with one less dimension (see Subsection B.4). This allows

us to iteratively find O , which so far we had only assumed to exist.

An easy method for evaluating the curvatures—the reverse Wein-

garten map—is key to the said simplification. This, however, only

works under our assumption that ⟨w |Xh |w⟩ = ⟨v |Xд |v⟩. This is
not always the case which we address next.

A monotone function f is defined to be a function which has

the property “x ≥ y =⇒ f (x) ≥ f (y)”. An operator monotone

function
4
is obtained from a generalisation of the aforesaid property

to matrices, which in our notation can be expressed as “Xh ≥

OXдO
T =⇒ f (Xh ) ≥ O f (Xд)O

T
”. An important class of operator

monotone functions is characterised by the parameter λ as fλ(x) =
−(λ + x)−1

.

The tuple X := (Xh,Xд, |w⟩ , |v⟩) is defined to be a matrix in-
stance. A matrix instance X is said to have a solution if there exists

an orthogonal matrix O such that O |v⟩ = |w⟩ and Xh ≥ OXдO
T
.

The matrix instance is said to have a tight solution if, in addition,

every solution O satisfies Xh ≯ OXдO
T
. Building on the results

of Kitaev, Mochon [12] Aharonov, Chailloux, Ganz, Kerenidis and

Magnin [2], one can use the aforesaid operator monotone functions

to check if a given matrix instance has a (tight) solution (see Subsec-

tion B.5). This can be used to find a γ ∈ [1, 0) such that the matrix

instance

(
γXh,Xд, |w⟩ , |v⟩

)
has a tight solution. The same method

also yields a λ such that ⟨w | fλ(γXh ) |w⟩ = ⟨v | fλ(Xд) |v⟩. It is not

too hard to see that f −1

λ (x) is also an operator monotone function.

3
The vector |nh ⟩ is not related to the number of initial points nh ; similarly

��nд 〉
and

nд are unrelated.

4
Note that the monotone function f (x ) = x 2

is not an operator monotone. To see this,

use

[
2 1

1 1

]
≥

[
1 1

1 1

]
.

Therefore, one can conclude that γXh ≥ OXдO
T
is equivalent to

fλ(γXh ) ≥ O fλ(Xд)O
T
. Let χ − 1 be the smallest value in the spec-

trum of fλ(γXh ) and fλ(Xд). Now observe that γXh ≥ OXдO
T

is, using the aforesaid, also equivalent to X ′
h ≥ OX ′

дO
T
where

X ′
h = fλ(γXh ) − χ I and X ′

д = fλ(Xд) − χ I. Further, X ′
h,X

′
д > 0 and

⟨w |X ′
h |w⟩ = ⟨v |X ′

д |v⟩ which entails we have reduced our problem
to the form we started our discussion with. Since the orthogonal

matrix which solves the various matrix instances remains the same,

we can use our technique on the final one to proceed. This outlines

how and why the EMA algorithm works. Let us summarise the

algorithm into an informal statement.

Definition (EMA Algorithm (informal)). Given a transition from

a TDPG the algorithm proceeds in three phases.

(1) Initialise

• Tightening: Bring the final points close to zero until the

corresponding ellipsoids start to touch.

• Spectral domain, matrices: Find the spectrum of the ma-

trices which represent the ellipsoid. Evaluate the smallest

matrix size n needed to represent the problem using ellip-

soids.

• Bootstrapping: Using the aforesaid, define(
X
(n)
h ,X

(n)
д ,

���w(n)
〉
,
���v(n)〉) := X

(n)

where the superscript denotes the size of the matrix and

vectors.

(2) Iterate (neglecting special cases)

Input: X
(k)

Output: X
(k−1)

, the vector

���n(k )h

〉
and the orthogonal matrices

Ō
(k )
д , Ō

(k )
h

Procedure:

• Tightening: Similar to the one above, stretch the inner

ellipsoid until it touches the outer ellipsoid.

• Honest align: Use operator monotone functions to make

the ellipsoids touch along the

���w(k )
〉
direction.

• Evaluate the Reverse Weingarten Map: Evaluate the curva-

tures and the normal (which fixes

���n(k )h

〉
) along the

���w(k )
〉

direction.

• Finite Method: Use the curvatures to specify X
(k−1)

and

find the orthogonal matrices Ō
(k )
д , Ō

(k )
h .

(3) Reconstruction

Evaluate O(n)
recursively using

O(k) = Ō
(k )
д

(���n(k )h

〉 〈
n
(k)
h

��� +O(k−1)
)
Ō
(k )
h .

Theorem 3 (Correctness of the EMA Algorithm (informal)). Given
a transition of a TDPG, the EMAAlgorithm always finds a real unitary
U such that the constraints in Theorem 2 are satisfied.

The complete algorithm and the proof of its correctness have

been omitted from this extended abstract and can be found in the

full version of the paper.

Despite the apparent simplicity of the main argument there are

many difficulties one must address in order to prove the aforesaid

statement. The results about operator monotone functions must

be extended to make them applicable to the tightening step as in-

dicated and for being certain that the solution unitary/orthogonal
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matrix stays unchanged under these transformations. Some results

related to different representations of the aforesaid transitions must

be extended as these situations arise in the tightening procedure. A

critical aspect of the algorithm is the handling of the cases where

one of the tangent directions of an ellipsoid has an infinite curva-

ture. For concreteness, imagine an ellipse which under an operator

monotone gets mapped to a line segment. The tip of the line seg-

ment, if viewed as a limit of an ellipse, has an infinite curvature.

In these cases, our finite analysis breaks down as the normal is

no longer well defined. This situation arises, for instance, if one

tries to solve the split move using this algorithm. This is handled

by considering the sequence leading to the infinite curvature and

expressing the troublesome component of the normal in terms of

known quantities which stay well defined even when the curvature

becomes infinite. Notably, for the moves used by Mochon in his

1/18 game that we numerically solved using this algorithm, this

infinite case did not appear.

The implication is that we can now convert known games with

arbitrarily small bias into complete protocols. One remaining ques-

tion is the effect of noise. In the current analysis two idealising

assumptions have been made. First, the EMA algorithm assumes

one can exactly solve certain problems classically, namely finding

the roots of polynomials and diagonalising matrices. Second, in

Mochon/Kitaev’s point game formalisms, one assumes that the uni-

taries are known and applied exactly. Neither of these will hold

practically, therefore, the effect of noise on the bias of the protocol

must be quantified, which we leave as an open problem for further

work.

A FRAMEWORK
A.1 TEF
Wenowdiscuss the key ingredients of the proof of Theorem 2. These

show how the dual SDP (see Section 1 of [2]) can be constructed.

The dual SDP formulation itself encodes within it the protocol (the

unitaries and the projectors) which can be trivially extracted.

Definition 4 (Canonical Form). Consider a frame of the TDPG

where the ith point has weight pi > 0 and coordinates [xi ,yi ]. The
tuple (|ψ ⟩ ,ZA,ZB ) is said to be in the Canonical Form with respect

to this frame if |ψ ⟩ =
∑
i
√
pi |ii⟩AB ⊗ |.⟩M , ZA = (

∑
xi |i⟩ ⟨i |A) and

ZB = (
∑
yi |i⟩ ⟨i |B ) where |.⟩M is any arbitrary state.

As stated, we start with the Canonical Form for the initial frame,

transition through intermediate frames and show that the final

frame is again in the Canonical Form.

1. First frame.��ψ(1)〉 = (∑
i

√
pдi |дiдi ⟩AB +

∑
i

√
pki |kiki ⟩AB

)
⊗ |m⟩M

ZA
(1)
=

∑
i
xдi |дi ⟩ ⟨дi |A +

∑
i
xki |ki ⟩ ⟨ki |A

ZB
(1)
=

∑
i
yдi |дi ⟩ ⟨дi |B +

∑
i
yki |ki ⟩ ⟨ki |B .

Proof. Follows from the assumption of starting with a Canoni-

cal Form. �

2. Bob sends to Alice. With y ≥ max{yдi } the following is a

valid choice��ψ(2)〉 =∑
i

√
pдi |дiдi ⟩AM ⊗ |m⟩B +

∑
i

√
pki |kiki ⟩AB ⊗ |m⟩M

U (1) = U
SWP{ ®д,m }

BM

ZA
(2)
= ZA

(1)

ZB
(2)
= yI

{ ®д,m }

B +
∑
i
yki |ki ⟩ ⟨ki |B .

Proof. We have to prove:

(1)

��ψ(2)〉 = U (1)
��ψ(1)〉 and

(2)U (1)†
(
ZB
(2)

⊗ IM

)
U (1) ≥

(
ZB
(1)

⊗ IM

)
.

The demonstration is as follows.

(1) It follows trivially from the defining action ofU (1)
.

(2) For convenience, let momentarilyU = U (1)
and note thatU † =

U so that we can write

U
(
ZB
(2)

⊗ IM

)
U

=y

©­­­­­­«
U

(
I
{ ®д,m }

B ⊗ I
{ ®д,m }

M

)
U +U

(
I
{ ®д,m }

B ⊗ I
{ ®k , ®h }
M

)
︸                 ︷︷                 ︸

outside U ’s action space

U

ª®®®®®®¬
+U

(∑
yki |ki ⟩ ⟨ki |B ⊗ IM

)
︸                          ︷︷                          ︸

outside U ’s action space

U

=ZB
(2)

⊗ IM ≥ ZB
(1)

⊗ IM

so long as y ≥ yдi which is guaranteed by the choice of y. �

3. Alice’s non-trivial step. We claim that the following is a

valid choice,��ψ(3)〉 =∑
i

√
phi |hihi ⟩AM ⊗ |m⟩B +

∑
i

√
pki |kiki ⟩AB ⊗ |m⟩M

U (2)
s.t.U (2) |v⟩ = |w⟩

ZA
(3)
=

∑
i
xhi |hi ⟩ ⟨hi |A +

∑
i
xki |ki ⟩ ⟨ki |A

ZB
(3)
= ZB

(2)

where

|v⟩ =

∑
i
√
pдi |дiдi ⟩AM√∑

j pдj

, |w⟩ =

∑
i
√
phi |hihi ⟩AM√∑

j phj

,

E(2) =

(∑
i

|hi ⟩ ⟨hi |A +
∑
i

|ki ⟩ ⟨ki |A

)
⊗ IM

subject to the condition∑
i
xhi |hihi ⟩ ⟨hihi |AM ≥

∑
i
xдi E

(2)U (2) |дiдi ⟩ ⟨дiдi |AM U (2)†E(2)

and of course the conservation of probability, viz.

∑
i pдi =

∑
i phi .
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Proof. We must show that

(1) E(2)
��ψ(3)〉 = U (2)

��ψ(2)〉 and
(2) ZA

(3)
⊗ IM ≥ E(2)U (2)

(
ZA
(2)

⊗ IM

)
U (2)†E(2).

The demonstration is as follows.

(1) Observing E(2)
��ψ(3)〉 = ��ψ(3)〉 the statement holds almost triv-

ially by construction ofU (2)
.

(2) Consider the space

H = span {|д1д1⟩ , |д2д2⟩ . . . , |h1h1⟩ , |h2,h2⟩ . . . } .

We will separate all expressions (they are nearly diagonal) into the

H space (which gets non-diagonal) and the rest. We start with the

LHS,

ZA
(3)

⊗ IM =
∑
i
xhi |hihi ⟩ ⟨hihi |AM︸                        ︷︷                        ︸

I

+
∑
i
xhi |hi ⟩ ⟨hi |A ⊗ (I − |hi ⟩ ⟨hi |)M

+
∑

xki |ki ⟩ ⟨ki |A ⊗ IM ,

where only term I is in the operator space spanned byH . Note that

all the terms are still diagonal. Next consider the RHS, without the

EU (defined to be E(2)U (2)
),

ZA
(2)

⊗ IM =
∑

xдi |дiдi ⟩ ⟨дiдi |AM︸                       ︷︷                       ︸
I

+
∑

xдi |дi ⟩ ⟨дi |A ⊗ (I − |дi ⟩ ⟨дi |)M

+
∑

xki |ki ⟩ ⟨ki |A ⊗ IM ,

which also has only term I in the H operator space. Consequently,

only on these will U have a non-trivial action. Let us first evaluate

the non-H part where we only need to apply the projector. The

result after separating equations where possible is∑
xhi |hi ⟩ ⟨hi |A ⊗ (I − |hi ⟩ ⟨hi |)M ≥ 0∑

(xki − xki ) |ki ⟩ ⟨ki |A ⊗ IM ≥ 0

which essentially only implies xhi ≥ 0. Finally the non-trivial part

yields∑
xhi |hihi ⟩ ⟨hihi |AM ≥

∑
xдi EU |дiдi ⟩ ⟨дiдi |AM U †E

which completes the proof. �

4. Bob accepts Alice’s change. The following is valid.��ψ(4)〉 = (∑
i

√
phi |hihi ⟩AB +

∑
i

√
pki |kiki ⟩AB

)
⊗ |m⟩M

E(3)U (3) = E(3)U
SWP{ ®h,m }

BM

ZA
(4)
= ZA

(3)

ZB
(4)
= y

∑
i

|hi ⟩ ⟨hi |B +
∑
i
yki |ki ⟩ ⟨ki |B

where E(3) = (
∑
i |hi ⟩ ⟨hi | +

∑
i |ki ⟩ ⟨ki |)B ⊗ IM .

Proof. We have to prove:

(1) E(3)
��ψ(4)〉 = U (3)

��ψ(3)〉 and
(2) ZB

(4)
⊗ IM ≥ E(3)U (3)

(
ZB
(3)

⊗ IM

)
U (3)†E(3).

The demonstration is as follows.

(1) This can be proven again, by a direct application of EU (defined

to be E(3)U (3)
for the proof).

(2) Note that

EU

(
I
{ ®д,m }

B ⊗ I
{ ®h, ®д, ®k ,m }

M

)
U †E = EU

(
I
{m }

B ⊗ I
{ ®h, ®д, ®k ,m }

M

)
U †E

+ E

(
I
{ ®д }
B ⊗ I

{ ®h, ®д, ®k ,m }

M

)
E

= EU

(
I
{m }

B ⊗ I
{ ®h,m }

M

)
U †E

=
∑
i

|hi ⟩ ⟨hi |B ⊗ I
{m }

M .

Since the other term in ZB
3
⊗ IM is anyway in the non-action space

ofU it follows that

EU (ZB
3
⊗IM )U †E = y

∑
i

|hi ⟩ ⟨hi |B ⊗I
{m }

M +
∑
i
yki |ki ⟩ ⟨ki |B ⊗IM .

It only remains to show that

ZB
(4)

⊗ IM ≥ E(3)U (3)
(
ZB
(3)

⊗ IM

)
U (3)†E(3)

which it obviously is becausey
∑
i |hi ⟩ ⟨hi |B⊗IM ≥ y

∑
i |hi ⟩ ⟨hi |B⊗

I
{m }

M and the yki term is common. �

A.2 Blinkered Unitaries
The blinkered unitary can be used to implement the two non-trivial

operations of the set of basic moves.

Merge: д1,д2 → h1

We can construct from the definitions

|v⟩ =

√
pд1

|д1⟩ +
√
pд2

|д2⟩

N
,

|v1⟩ =

√
pд2

|д1⟩ −
√
pд1

|д2⟩

N
,

|w⟩ = |h1⟩

with N =
√
pд1
+ pд2

and

U = |w⟩ ⟨v | + |v⟩ ⟨w | + |v1⟩ ⟨v1 | (= U
†).

Using

EU |д1⟩ =

√
pд1

|w⟩

N
, EU |д2⟩ =

√
pд2

|w⟩

N
and the aforesaid, Equation (2) becomes

xh |h1⟩ ⟨h1 | ≥

2∑
i=1

xдi EU |дi ⟩ ⟨дi |U
†E

which is equivalent to

xh ≥
pд1

xд1
+ pд2

xд2

N 2
.

This readily generalises to anm → 1 point merge and matches the

merge condition xh ≥
〈
xд

〉
.
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Split: д1 → h1,h2

Again from the definitions, one can write

|v⟩ = |д1д1⟩ ,

|w⟩ =

√
ph1

|h1⟩ +
√
ph2

|h2⟩

N
,

|w1⟩ =

√
ph2

|h1⟩ −
√
ph1

|h2⟩

N

with N =
√
ph1
+ ph2

and

U = |v⟩ ⟨w | + |w⟩ ⟨v | + |w1⟩ ⟨w1 | = U
†.

We evaluate EU |д1⟩ = |w⟩ and insert into the constraints to get

xh1
|h1⟩ ⟨h1 | + xh2

|h2⟩ ⟨h2 | − xд |w⟩ ⟨w | ≥ 0.

This yields the matrix equation[
xh1

xh2

]
−

xд

N 2

[
ph1

√
ph1

ph2√
ph1

ph2
ph2

]
≥ 0

⇐⇒ I −
xд

N 2


ph

1

xh
1

√
ph

1

xh
1

ph
2

xh
2√

ph
1

xh
1

ph
2

xh
2

ph
2

xh
2

 ≥ 0

⇐⇒
xд

N 2

(
ph1

xh1

+
ph2

xh2

)
≤ 1

where in the second step we used the fact that F − M ≥ 0 is

equivalent to I −
√
F
−1

M
√
F
−1

≥ 0 (if F > 0) and the last step

is obtained by writing the matrix in the previous step as |ψ ⟩ ⟨ψ |
followed by demanding 1 ≥ ⟨ψ |ψ ⟩. This also readily generalises to

a 1 →m point split and matches the split condition ⟨1/xh⟩ ≤ 1/xд .

A.3 Bias 1/10

Mochon’s family of gameswith bias 1/(4k+2) fork ∈ {1, 2 . . . } only

use a special kind of transition based on the following assignment.

Definition (Mochon’s assignment). Given a set of n points 0 ≤

x1 < x2 · · · < xn , a polynomial f (x) with order k at most n − 2 and

f (−λ) ≥ 0 for all λ ≥ 0, let the weight corresponding to the point

xl be given by p(xl ) = −
f (xl )∏

j,l (x j−xl )
.

Let {i} be the set of indices for which p(xi ) < 0 and {k} be the
remaining indices with respect to {1, 2, . . .n}. Mochon’s assignment

is given by (component-wise)

{xд1
, xд2
. . . } = {xi }

{pд1
,pд2
. . . } = {−p(xi )}

{xh1
, xh2
. . . } = {xk }

{ph1
,ph2
. . . } = {p(xk )}.

Mochon showed that this assignment always satisfies Equa-

tion (2), the scalar condition (see Lemma 5.1 of [2]; or Lemma

31 of [12]). The games corresponding to k = 2 approach bias 1/10

and are defined by points on a grid as indicated in Figure 4. Using

Mochon’s assignment, for the vertical transition highlighted in the

figure, with f (yi ) = (y−1 − yi ) (Γ1 − yi ) (Γ2 − yi ), the weight of the
point at [x j ,yj ] is given by

f (yj )c(x j )∏
k,j (yk − yj )

Figure 4: An illustration of Mochon’s bias 1/10 game. The
3 → 2 transition, the key move, has been highlighted. For
concreteness, let x j = x0 + j∆ and let similarly yj = y0 + j∆
for some lattice spacing ∆ =: δx =: δy; y0 = x0. For vertical
transitions, the unfilled dots represent initial points and the
filled dots represent final points. For horizontal transitions,
it is the other way. See Section 4.1 of [12] or Section 4 of
[2] for an explanation. It is related to the well-understood
connection between TIPGs and TDPGs.

where Γl = Γ + l , Γ is large compared to 1 and c is a constant (wrt
y-coordinate) normalisation factor. Applying Mochon’s assignment

we get

P2(yj+2) =
−f (yj+2)c(x j )

4.3(δy)2yj+2

=: ph2

P1(yj+1) =
−f (yj+1)c(x j )

3.2(δy)2yj+1

=: pд3

P1(x j ) =
−f (yj−1)c(x j )

3.2(δy)2yj−1

=: ph1

P2(x j ) =
−f (yj−2)c(x j )

4.3(δy)2yj−2

=: pд2

P(x j ) =
f (0)c(x j )δy

yj+2yj+1yj−1yj−2

=: pд1

where we added the minus sign to account for the fact that f will

be negative for coordinates between y−1 and Γ1. Mochon’s game

is symmetric under the exchange of axes, viz. x ↔ y, unto signs

(filled and unfilled points get flipped). This means the game satisfies

the symmetry constraints P1(yj ) = P1(x j ) which yields

f (yj )c(x j−1)

✘✘✘✘
3.2(δy)2yj

=
f (yj−1)c(x j )

✘✘✘✘
3.2(δy)2yj−1

which means c(x j ) = c0 f (x j )/x j where c0 is a constant. This also

entails that P2(yj ) = P2(x j ), viz. it satisfies the second symmetry
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constraint. Finally we can evaluate

P(x j ) =
f (0)f (x j )δx

x j+2x j+1x jx j−1x j−2

=
c0x0(x0 − x j )

x5

j
δx + O(δx2).

In all of Mochon’s games, the weight on each axis sums to 1/2.

This is because each of his games start with splitting all the weight

at [0, 1] and [1, 0] along the axis. The remaining weight, i.e. the

weight on the ladder as Mochon calls it, gets cancelled finally; all

the weight except that on the two isolated points near the origin.

Imposing this normalisation condition and that the split is valid,

we get∑
j
P(x j ) =

1

2

=
∑
j

P(x j )

x j
≈

∫ Γ

x0

(x0 − x)dx

x5
=

∫ Γ

x0

(x0 − x)dx

x6
.

The approximation assumes ∆ is small and the number of points

large. Since we can merge the two isolated points to the point

[x0, x0], this quantity yields the bias
5
and can be computed using

the aforesaid, in the large Γ limit, as

x0

∫ Γ

x0

(
1

x5
−

1

x6

)
dx =

∫ Γ

x0

(
1

x4
−

1

x5

)
dx[

1

4

−
1

3

]
≈

[
1

5

−
1

4

]
1

x0

x0 ≈
3

5

=⇒ ϵ ≈
3

5

−
1

2

=
1

10

.

We now outline the proof of the claim that U3→2 (see Equa-

tion (4)) satisfies the required constraint (see Equation (2)). We

will need terms of the form EU |дi ⟩ with E = I{hi } . This entails
that on the {|дi ⟩} space (U3→2 is referred to asU in the following

discussion)

EhUEд = |w⟩ ⟨v | + |w1⟩
〈
v ′

1

��
= |w⟩ ⟨v | + |w1⟩ (cosθ ⟨v1 | + sinθ ⟨v2 |) .

Consequently we have

EhU |д1⟩ =

√
pд1

Nд
|w⟩ +

[
cosθ .0 − sinθ

pд2
+ pд3

√
pд1

Nv2

]
|w1⟩

EhU |д2⟩ =

√
pд2

Nд
|w⟩ +

[
cosθ

√
pд3

Nv1

+ sinθ

√
pд2

Nv2

]
|w1⟩

EhU |д3⟩ =

√
pд3

Nд
|w⟩ +

[
− cosθ

√
pд2

Nv1

+ sinθ

√
pд3

Nv2

]
|w1⟩ .

The first sum of the constraint inequality becomes
⟨xh⟩

√
ph

1
ph

2

N 2

h
(xh1

− xh2
)

h.c.

ph
2
xh

1
+ph

1
xh

2

N 2

h


in the |w⟩ , |w1⟩ basis (as defined after Equation (4)). SinceMochon’s

game uses the 3 → 2 move with one point on the axis, we take

5
Some overhead arises from the conversion of the TIPG into a TDPG but these can be

made arbitrarily small.

xд1
= 0. Consequently we need only evaluate

xд2
EhU |д2⟩ ⟨д2 |U

†Eh �

xд2


pд

2

N 2

д

(
cosθ

√pд
3
pд

2

NдNv
1

+ sinθ
pд

2

NдNv
2

)
h.c.

(
cos

√pд
3

Nv
1

+ sinθ
√pд

2

Nv
2

)
2

,
xд3

EhU |д3⟩ ⟨д3 |U
†Eh �

xд3


pд

3

N 2

д

(
− cosθ

√pд
2
pд

3

NдNv
1

+ sinθ
pд

3

NдNv
2

)
h.c.

(
− cos

√pд
2

Nv
1

+ sin

√pд
3

Nv
2

)
2


which means that the constraint yields the 2 × 2 matrix inequality



〈
xh

〉
−

〈
xд

〉 √
ph

1

ph
2

N 2

h
(xh

1

− xh
2

) − sinθ
〈
xд

〉 Nд
Nv

2

− cosθ
√
pд

2
pд

3

NдNv
1

(xд
2
− xд

3
)

h.c.

ph
2

xh
1

+ph
1

xh
2

N 2

h
− cos

2 θ
N 2

v
1

(pд
3
xд

2
+ pд

2
xд

3
)

− sin
2 θ(

N 2

v
2

/N 2

д
) 〈

xд
〉
−

2 cosθ sinθ
√
pд

3
pд

2

Nv
1
Nv

2

(
xд

2
− xд

3

)


≥ 0.

It is not hard to show that Mochon’s transition is average non-

decreasing viz. ⟨xh⟩ −
〈
xд

〉
≥ 0. We will set the off-diagonal ele-

ments of thematrix above to zero and show that the second diagonal

element, the second eigenvalue therefore, is positive.

Setting the off-diagonal to zero one can obtain θ by solving the

quadratic equation. To establish the existence of such a θ and the

positivity of the inequality constraint we simplify our expressions.

So far everything was exact even though the basis and techniques

were chosen based on experience. Assuming θ
Nд
Nv

2

≈ O(δy) at most

(where recall δy = δx is the lattice spacing which is taken to be

small) one can express, to first order in θ
Nд
Nv

2

, the aforesaid as

√
ph

1
ph

2

N 2

h
(xh1

− xh2
) −

√pд
2
pд

3

NдNv
1

(xд2
− xд3

)〈
xд

〉 = θ
Nд

Nv2

+ O(δy2)

and

ph2
xh1
+ ph1

xh2

N 2

h

−[
pд3

xд2
+ pд2

xд3

N 2

v1

+ 2θ
Nд

Nv2

√
pд3

pд2

NдNv1

(xд2
− xд3

)

]
+ O(δy2) ≥ 0.

Using the first equation, one can show that θ
Nд
Nv

2

= 0.δy + O(δy2),

which in turn can be used to show the inequality holds. A similar

demonstration can also be given forU2→2 to implement the 2 → 2

transitions which occur close to the origin.

B EMA ALGORITHM
B.1 Restricting to Reals
The reason why restricting to real numbers does not lead to a loss

of generality is related to the fact that the set of allowed transitions,

the so-called Expressible-By-Matrices (EBM)
6
functions

7
(see Defi-

nition 3.1 of [2]) forms a cone, KΛ (see Lemma 3.6 of [2]). The EBM

6Λ represents matrices with spectra in [0, Λ]
7
functions and transitions are essentially equivalent representations

214



Quantum Weak Coin Flipping STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

condition arises naturally in the dual SDP. The cone dual to KΛ is

denoted by K∗
Λ. This cone happens to be the cone of operator mono-

tone functions (see Lemma 3.9 of [2]). We define K ′
Λ and K ′∗

Λ to be

the corresponding sets (cones) with the added restriction to real

numbers, i.e. K ′
Λ is the set of EBRM (Expressible By Real Matrices)

functions on the [0,Λ] interval and K ′∗
Λ is the set of real operator

monotone functions on [0,Λ]—the set of functions f : [0,Λ] → R
such that for all real symmetric matricesH ,G satisfyingH ≥ G , one
has f (H ) ≥ f (G). One can prove the following using the matrix

representation of complex numbers.

Lemma 5. K∗
Λ = K ′∗

Λ , i.e. the set of operator monotones on [0,Λ] =
the set of real operator monotones on [0,Λ].

The set of EBM functions is a closed convex cone (see Lemma 3.16

of [2]) and so is the set of EBRM functions (the proof is analogous to

the EBM case). Since for closed convex cones, the bi-dual happens

to be the same as the initial cone (see Theorem 5.5 of [17]), we have

the following.

Corollary 6. K ′
Λ = K ′∗∗

Λ = K∗∗
Λ = KΛ, i.e. the set of EBRM functions

on [0,Λ] = the set of Λ valid functions (dual of EBRM functions) =
the set of Λ valid functions (dual of EBM functions) = the set of EBM
functions on [0,Λ].

B.2 Geometric Interpretation
Consider an unnormalised vector |u⟩ =

∑
j uj

��hj 〉 with uj ∈ R.
Recall that {|u⟩ | ⟨u |Xh |u⟩ = 1} represents the boundary of en

ellipsoid with (semi) axes a1 = 1/
√
xh1
,a2 = 1/

√
xh2
. . . where

Xh = diag(xh1
, xh2
. . . ). An inequality would correspond to points

inside or outside the ellipsoid. If we start with some arbitrary (pos-

sibly unnormalised) vector |u⟩ then the point on the ellipse along

this direction will be given by Eh (|u⟩) = |u⟩ /
√
⟨u |Xh |u⟩. The

set

{
|u⟩ | ⟨u |UXдU

† |u⟩ = 1

}
also corresponds to the equation of

an ellipsoid with (semi) axes

{
1/
√
xдi

}
except that it is rotated

because if we use |u ′⟩ = U |u⟩ then the equation reduces to the

standard form in the u ′i variables which can then be used to obtain

ui s by the aforesaid relations which is a rotation. We can define a

similar map from a vector |u⟩ to a point on the rotated ellipse as

Eд(|u⟩) = |u⟩ /
√
⟨u |UXдU † |u⟩. The statement that

Xh −UXдU
† ≥ 0

⇐⇒ ⟨u |Xh |u⟩ − ⟨u |UXдU
† |u⟩ ≥ 0 ∀ |u⟩

⇐⇒ ⟨u |UXдU
† |u⟩ ≤ 1 ∀ {|u⟩ | ⟨u |Xh |u⟩ = 1}

which in turn corresponds to the statement that every point denoted

by |u⟩ that is on the h ellipsoid must be on or inside the д ellipsoid.

Note that if ⟨xh⟩ −
〈
xд

〉
= 0 then for |u⟩ = |w⟩ the inequality

saturates. This in turn means that even for Eh (|w⟩) the inequality

is saturated as it is the same vector up to a scaling. The difference

is that Eh (|w⟩) represents a point on the h ellipsoid. Since the

inequality is saturated it means that the ellipsoids must touch at

this point. Thus Eд(|w⟩) = Eh (|w⟩) which one can check explicitly

as well.

B.3 Weingarten Map
One way of evaluating the curvature at a point on the ellipsoid is to

find a coordinate system with its origin on the said point and then

consider the manifold, locally, as a function from n − 1 coordinates

to one coordinate, call it xn (x1, x2 . . . xn−1). The curvature of this

object will be a generalisation of the second derivative which forms

a matrix with its elements given by ∂2xn/∂xi∂x j . The eigenvectors
of this matrix are the principle directions of curvature and the

corresponding eigenvalues are the curvature values.

For a normalised direction vector |n⟩ the support function (see

Section 2.5 of [16]) corresponding to an ellipsoidX = diag(x1, x2 . . . )

is given by

h(n) =
√
⟨n |X−1 |n⟩ =

√∑
i
x−1

i n2

i . (5)

The derivative of the support function, ∂h/∂ni =
x−1

i ni
h(n) , yields the

point on the ellipsoid where the tangent plane corresponding to

the direction |n⟩ touches the said ellipsoid, i.e. the normal at the

point

∑
i ∂h/∂ni |i⟩ is given by |n⟩. The second derivative of the

support function, known as the reverse Weingarten map,

∂j∂ih(n) =
1

h

(
−
x−1

j x−1

i ninj

h2
+ x−1

i δi j

)
(6)

contains as eigenvalues the radii of curvature at the aforesaid point

and as eigenvectors the principle directions of curvature, except

for |n⟩ which happens to be an eigenvector with zero eigenvalue.

The curvature value is the inverse of the radius of curvature. The

Weingarten map can be computed by inverting the reverse Wein-

garten map. If instead of the normal only the point is known, at

which this map must be evaluated, then one can use the gradient to

first find this normal and then apply the aforesaid. The normal at a

point of contact |c⟩ =
∑
i ci |i⟩ is |n(c)⟩ =

∑
i xici |i⟩ /

√∑
j x

2

j c
2

j .

B.4 Curvature and Reduction
Let the size of the matrices Xд and Xh be n × n. We had concluded

that the curvature of the EXд ellipsoid at the point |v⟩ /
√
⟨v |Xд |v⟩

must be more than the curvature of the EXh ellipsoid at the

point |w⟩ /
√
⟨w |Xh |w⟩. To make this precise, let the reverse Wein-

garten maps at these points be Wд =
∑n−1

i=1
c−1

дi

��tдi 〉 〈
tдi

��
and

Wh =
∑n−1

i=1
c−1

hi

��thi 〉 〈
thi

��
respectively (

{��tдi 〉} lie in the tangent

plane of the Xд ellipsoid at |v⟩ /
√
⟨v |Xд |v⟩; similarly for

{��thi 〉}).
There is some Õi j ∈ R satisfying

∑
j Õi jÕ jk = δik , such that the

required solution can be written as

O = |nh⟩
〈
nд

�� +∑
i , j

Õi j
��thi 〉 〈

tдj
��

=

©­­­­­­­«
|nh⟩ ⟨nh | +

∑
i , j

Õi j
��thi 〉 〈

thj

���︸                ︷︷                ︸
=O (n−1)

ª®®®®®®®¬

©­­­­­­­«
|nh⟩

〈
nд

�� +∑
i

��thi 〉 〈
tдi

��︸                          ︷︷                          ︸
=Ō (n)

ª®®®®®®®¬
where

��nд〉 and |nh⟩ are the normal vectors (not to be confused

with the size of the matrix, n) and O(n−1)
is a unitary that acts

on the tangent space of the Xh ellipsoid. The Weingarten mapWд
gets transformed to OWдO

T
when Xд is rotated to OXдO

T
. Con-

sider the point |w⟩ /
√
⟨w |Xh |w⟩, which is shared by both the EXh
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and the EOXдOT ellipsoid. It must be so that along all directions

in the tangent plane, the Xh ellipsoid (the smaller one, remember

larger Xh means smaller ellipsoid) must have a smaller radius of

curvature than the OXдO
T
ellipsoid, i.e. for all |t⟩ ∈ span{

��thi 〉},
⟨t |W ′

h |t⟩ ≤ ⟨t |OW ′
дO

T |t⟩. Restricting to the tangent space, with-

out loss of generality as the eigenvalue along the normal vec-

tor is anyway zero, one can deduce that the statement is equiv-

alent toWh ≤ OW дO
T
. Explicitly, it means

∑n−1

i=1
c−1

hi

��thi 〉 〈
thi

�� ≤∑n−1

i=1
c−1

дi O
��tдi 〉 〈

tдi
��OT

. Using the form of O deduced above, one

obtains

∑n−1

i=1
c−1

hi

��thi 〉 〈
thi

�� ≤ ∑n−1

i=1
c−1

дi O
(n−1)

��thi 〉 〈
thi

��O(n−1)T
.

This in turn entails

X
(n−1)

h ≥ O(n−1)X
(n−1)
д O(n−1)T

where X
(n−1)

h := diag(ch1
, ch2
. . . chn−1

) and X
(n−1)
д :=

diag(cд1
, cд2
. . . cдn−1

). This is of the same form as the onewe started

with, except in one less dimension. It remains to show that the equal-

ity constraint involving the vectors also has the corresponding form.

Substitute in O |v⟩ = |w⟩ the form of O as determined earlier, i.e.

O =
(���n(n)h

〉 〈
n
(n)
h

��� +O(n−1)
)
Ō(n)

to obtain

(
|nh⟩ ⟨nh | +O

(n−1)
)
Ō(n) |v⟩ = |w⟩. SinceO(n−1)

can not

influence the |nh⟩ component of the vector Ō(n) |v⟩, one can project
it out to obtain

O(n−1)
(
Ō(n) |v⟩ − ⟨nh | Ō

(n) |v⟩ |nh⟩
)

︸                                  ︷︷                                  ︸
:=|v (n−1)⟩

= |w⟩ − ⟨nh |w⟩ |w⟩︸                ︷︷                ︸
:=|w (n−1)⟩

which has the claimed form, concluding the demonstration.

B.5 Connection with Operator Monotone
Functions

Using the notation from Section 4, let [χ , ξ ] be the smallest inter-

val containing the spectra of both Xh and Xд . Assume that the

eigenvectors of Xh which have no overlap with |w⟩ have eigen-

value ξ ; similarly for Xд , |v⟩ and χ . The claim is that the ma-

trix instance X = (Xh,Xд, |w⟩ , |v⟩) has a solution if and only if

⟨w |Xh |w⟩ ≥ ⟨v |Xд |v⟩ and ⟨w | fλ(Xh ) |w⟩ ≥ ⟨v | fλ(Xд) |v⟩ for
all λ ∈ (−∞,−ξ ) ∪ (−χ ,∞). Further, if the solution is tight, then

either ⟨w |Xh |w⟩ = ⟨v |Xд |v⟩ or there exists a λ in the stated range

such that ⟨w | fλ(Xh ) |w⟩ = ⟨v | fλ(Xд) |v⟩.
This result also admits an intuitive geometric interpretation. To

establish EXh is inside EOXдOT , which essentially means we look

at all different directions andmake sure theh ellipsoid is inside theд
ellipsoid, we can instead look along a single direction |w⟩ and check

that all the different ellipsoids Ef (Xh ) are inside the corresponding

EOf (Xд )OT ellipsoids along just this direction, for every operator

monotone f in the class indicated earlier.

The statement essentially follows from a combination of two

results: (1) the generalisation of Corollary 3.18 of [2] (which charac-

terises EBM functions on [0,Λ] using operator monotone functions)

to an arbitrary interval [χ , ξ ] and (2) the connection between the

set of EBRM functions K ′
Λ and the set of EBM functions KΛ (see

Subsection B.1). The qualification about the tightness of the solution

can be proved by using Xh > Xд if and only if fλ(Xh ) > fλ(Xд).
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