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Abstract
We discuss two basic problems of marginals of small quantum systems. We then present new
methods for the analysis of quantum marginals and indicate how the methods could be extended
to Boson or Fermion density matrices.

While quantum marginals are in the focus of computationally hard problems of quantum chemistry,
basic questions about small systems are already hard to understand. For example, Werner [1]
used Bell’s inequalities to show that two two-qubit states coinciding in one of their one-qubit
marginals may not be the marginals of a three-qubit state. Another example is the discovery of a
six-qubit pure state uniquely determined by its two-body marginals which is not the unique ground
state of a two-local Hamiltonian [2]. Towards a systematic analysis of marginals, we show how to
analyze the lattice of exposed faces (intersections with supporting hyperplanes) employing an
algebraic characterization [3], and we explain some recent results obtained for three qubits.
Finally, we indicate how the methods could be extended to Boson or Fermion density matrices
using the projection onto the symmetric or anti-symmetric subspace.

[1] Reinhard F. Werner, An application of Bell’s inequalities to a quantum state extension
problem, Letters in Mathematical Physics 17 (1989), 359-363.

[2] Salini Karuvade et al., Uniquely determined pure quantum states need not be unique
ground states of quasi-local Hamiltonians, Physical Review A 99 (2019), 062104.

[3] S. W., A variational principle for ground spaces, Reports on Mathematical Physics 82
(2018), 317-336.
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PART I. Introduction to Marginal Problems
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Subsystems of a Many-Body System

Definition
We consider a many-body system of N units. A family of subsets g of
{1, . . . ,N} denotes a family of subsystems. If we compare different sub-
systems we choose an ordering on the subsets.

Examples (Families of Subsystems)
1) Path graph on three nodes
g =

{
{1,2}, {2,3}

}
1 2 3

The ordering g =
{

(2,1), (2,3)
}

will be convenient.

2) Complete graph on three
nodes g =

{
{1,2}, {2,3}, {3,1}

}
1 2

3
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Algebra of a Quantum System
Definition

I Let Md denote the set of complex d × d matrices. Let A ⊂ Md be a
*-subalgebra with the inner product 〈A,B〉 = tr(A∗B), A,B ∈ A.

I The state space of A comprises the positive semi-definite matrices
of trace one, called states or density matrices,

D(A) = {ρ ∈ A : ρ � 0, tr(ρ) = 1}.

I A state ρ ∈ D(A) is a pure state if and only if ρ is an extreme point
of D(A) if and only if ρ lies on no open segment in D(A).

Examples
I Given a projection P = P2 = P∗ in A, we shall consider the

*-algebra PAP = {PAP : A ∈ A} with multiplicative identity P.
I The pure states of D(Md ) are the projections of rank one.
I We identify Cd ⊂ Md with the diagonal matrices. The state space
D(Cd ) is the simplex of probability distributions on {1, . . . ,d}.
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Marginals of a Quantum Many-Body System

Definition
I Let a = (A1, . . . ,AN) be a sequence of *-algebras Ai ⊂ Mdi ,

i = 1, . . . ,N. Let ν ⊂ {1, . . . ,N}. The *-algebra of the subsystem
with units in ν is the tensor product Aν :=

⊗
i∈ν Ai . We denote the

multiplicative identity of Aν by 1ν and write A = A{1,...,N}.
I Let µ ⊂ ν. The partial trace trν\µ : Aν → Aµ over the subsystem
ν \ µ is the hermitian adjoint to Aµ → Aν , A 7→ A⊗ 1ν\µ. The state
ρµ = trν\µ(ρ) ∈ D(Aµ) is called the µ-marginal ρµ of ρ ∈ D(Aν).

I Let ν̄ = {1, . . . ,N} \ ν. The marginal map with respect to the
algebras a and the subsystems g is

mar(a,g) : A →×ν∈gAν , A 7→ (trν̄(A))ν∈g.

The marginal set mar(a,g)(D(A)) is also known as the set of
reduced density matrices (Erdahl 1972, Zeng et al. 2019).

• Robert M. Erdahl, JMP 13 (1972), 1608–1621.
• Bei Zeng et al., Quantum Information Meets Quantum Matter, New York: Springer, 2019.
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Marginal Problems

Definition
Let D(a, g) =×ν∈gD(Aν) denote the set of families of states on the
subsystems specified by g. The marginal problem is the task to decide
whether a family ρ(ν)ν∈g ∈ D(a, g) lies in the marginal set, that is to say,
whether there is σ ∈ D(A) such that ρ(ν)ν∈g = mar(a,g)(σ), or equiva-
lently, such that ρ(ν) = σν for all ν ∈ g.

Physicists have studied various restrictions of the marginal problem.

Definition
Let P ∈ A be a projection. We call P-restricted marginal problem the task
to decide whether a family ρ(ν)ν∈g ∈ D(a, g) is the family of marginals
of a state in D(PAP), that is to say, whether there is σ ∈ D(PAP) such
that ρ(ν)ν∈g = mar(a,g)(σ).

Examples: Symmetrization PS : (Cd )⊗r → (Cd )⊗r , v 7→ 1
N!

∑
π∈SN

π(v)

Antisymmetrization PA : (Cd )⊗r → (Cd )⊗r , v 7→ 1
N!

∑
π∈SN

sgn(π)π(v)
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Examples of Marginal Problems

Theorem (1-Body N-Representability Problem)
This is the PA-restricted marginal problem for Ai = Md , i = 1, . . . ,N, and
for g = {{1}}. The states in D(PAAPA) are called Fermion states. It has
been shown in Quantum Chemistry in the 1960’s that a one-body state
ρ ∈ D(Md ) lies in the marginal set mar(a,g)(D(PAAPA)), if and only if all
eigenvalues of ρ are less than or equal to 1/N. (Schur-Horn orbitope)

Most marginal problems are difficult to solve (for exceptions see, e.g.,
Klyachko 2006). A necessary condition for ρ(ν)ν∈g ∈ D(a, g) to lie in the
marginal set is that ρ(ν)ν∈g is compatible in the sense that for all µ, ν ∈ g we
have ρ(µ)µ∩ν = ρ(ν)µ∩ν .

Theorem
Let a = (Cd1 , . . . ,CdN ) and let g be the set of edges of a graph without cy-
cles on the nodes {1, . . . ,N}. Then ρ(ν)ν∈g ∈ D(a, g) lies in the marginal
polytope mar(a,g)(D(A)) if and only if ρ(ν)ν∈g is compatible.
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A Pair of Overlapping Two-Qubit States
Note (Zeng et al. 2019)

Marginal problem of a = (M2,M2,M2), g =
{

(2,1), (2,3)
}

is still open.

Partial results:

Theorem (Bell-Inequalities, Werner 1989)
If ρ ∈ D(M2⊗M2) and (ρ, ρ) ∈ mar(a,g)(D(A)), then for all Ai ,Bi ∈ H(M2),
i ∈ {0,1}, of operator norm at most one we have

tr (ρ(A0 ⊗ B0 + A0 ⊗ B1 + A1 ⊗ B0 − A1 ⊗ B1)) ≤
√

6.

The maximum of the LHS is
√

8 without the condition (ρ, ρ) ∈ mar(a,g)(D(A)).

Theorem (Symmetric Extension Problem, Chen et. al 2014)
If ρ ∈ D(A{2,1}) then (ρ, ρ) ∈ mar(a,g)(D(A)) if and only if

tr(ρ2
{1}) ≥ tr(ρ2)− 4

√
det ρ.

Jianxin Chen, et al., Symmetric extension of two-qubit states, PRA 90 (2014), 032318.
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PART II. Lattices of Ground Projections
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Local Hamiltonians
Definition

I The space of local Hamiltonians with respect to the algebras a and
with interactions specified by a family g of subsets of {1, . . . ,N} is

U(a,g) =

{∑
ν∈g

A(ν)⊗ 1ν̄ : A(ν) ∈ H(Aν), ν ∈ g

}
.

I We endow the (real) vector space H(A) of the hermitian matrices
in A with the scalar product 〈A,B〉 = tr(AB), A,B ∈ H(A).

I Let πU : H(A)→ H(A) be the orthogonal projection to a subspace
U ⊂ H(A). We call W (U) = πU(D(A)) the numerical range of U.

Lemma
The marginal map factors through CU(a,g) and restricts to the linear iso-

morphism W (U(a,g))
mar(a,g)−−−−−→ mar(a,g)(D(A)) onto the marginal set.

Idea: Study the geometry of numerical ranges of subspaces U ⊂ H(A).
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Pure State Quantum Tomography

Definition
I A state ρ ∈ D(A) is uniquely determined among all states (UDA)

with respect to U if for all σ ∈ D(A) the equality πU(σ) = πU(ρ)
implies σ = ρ.

I The ground projection of A ∈ H(A) is the spectral projection of A
corresponding to the smallest eigenvalue.

I A state ρ ∈ D(A) is the unique ground state (UGS) of A ∈ H(A) if ρ
is the ground projection of A. A state ρ ∈ D(A) is a UGS of U if ρ is
the UGS of a matrix in U.

Lemma
I If ρ ∈ D(A) is a UGS of U, then ρ is UDA with respect to U.
I If a pure state ρ ∈ D(A) is UDA with respect to U then πU(ρ) is an

extreme point of the numerical range W (U).
I If ρ ∈ D(A) is the UGS of A ∈ U then B = πU(ρ) is an exposed

point of W (U). In fact, πU(ρ) = argminB∈W (U)〈A,B〉.
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Tomography From Quantum Marginals

Question (Chen et al. 2012)
Is there a pure state that is UDA with respect to U(a,g) and that is not a
UGS of U(a,g)? Does the numerical range W (U(a,g)) have a non-exposed
point?

Jianxin Chen, et al., Comment on some results of Erdahl and the convex structure of reduced
density matrices, Journal of Mathematical Physics 53 (2012), 072203.

Theorem (Karuvade et al. 2019)
Consider a six-qubit system with two-local interactions, that is to say,
a = (M2,M2,M2,M2,M2,M2) and g consists of the two-element subsets
of {1, . . . ,6}. Then there exists a pure state that is UDA with respect to
U(a,g) and that is not a UGS of U(a,g).

Idea: a) Study the exposed faces of the numerical range W (U(a,g)).
b) Find non-exposed points of W (U(a,g)) for systems with less than six qubits.
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Lattices of Exposed Faces
Definition

I Let 1 ∈ U and put U0 = U ∩ 1⊥ = {A ∈ U : tr(A) = 0}.
I Spectrahedron S(U0) = {A ∈ U0 : 1 + A � 0}.
I An exposed face of a convex set C ⊂ U0 has the form

argminB∈C〈A,B〉 for some A ∈ U0. Let F(C) denote the set of
exposed faces.

I Let P(U) denote the set of ground projections of matrices in U.

Theorem
I S(U0) is the polar convex set to the numerical range W (U0).
I There are lattice isomorphisms P(U)→ F(W (U0))→ F(S(U0)),

P 7→ πU0 (D(PAp)), F 7→ (inner normal cone of F ) ∩ ∂S(U0).

Example: W (U0) S(U0)
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Lattice of Ground Projections
Definition
A coatom of a lattice L with greatest element 1 is a maximal element of
L\{1}. L is coatomistic if any element is the infimum of a set of coatoms.

Theorem (W. 2018)
I The lattices P(U) = F(W (U0)) are coatomistic.
I A projection P ∈ P(U) is a coatom if and only if P ′A+P ′ ∩ U is a

ray. Thereby, A+ is the cone of positive semi-definite matrices in A.

Commutative Example
2-local 3-bit Hamiltonians: a = (C2,C2,C2), g =

{
{1,2}, {2,3}, {3,1}

}
.

The coatoms of P(U(a,g)) all have rank six.
They are the complements of the edges in
the complete bipartite graph with vertices
{0,1}×3, the bipartition being defined by the
even resp. odd number of 1’s.

000

011

101

110

111

100

010

001
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Three Qubits
Let a = (M2,M2,M2) and g =

{
{1,2}, {2,3}, {3,1}

}
.

Lemma
The lattice P(U(a,g)) has no coatom of rank seven.

The lattice isomorphism F(W (U0)) = F(S(U0)) is antitone. The coatoms of
P(U) are in one-to-one correspondence with the exposed points of S(U0).

Experimental Maths
The exposed points of the spectrahedron S(U0) can be explored numeri-
cally using semi-definite programming. Candidates can be verified using
the preceding theorem.

Example (Coatom of Rank Five)

Kernel projection of 6III + 3IIZ + IZI + 2ZII + 4IZX − 4ZIX + 3ZIZ − 3ZZI
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Indistinguishable Particles

In principle, the algebraic approach works also for quantum marginals of
bosonic and fermionic states.

Lemma
Let P ∈ A be a projection and U ⊂ H(A) a vector space of hermitian
matrices. Then πU |H(PAP) factors through PUP and restricts to the linear
isomorphism W (PUP) = πPUP(D(PAP))

πU−→ πU(D(PAP)).

S. W., Quantum convex support, Linear Algebra and its Applications 435 (2011), 3168–3188.

Observation: The P-restricted marginal problem is equivalent to the
membership problem of the numerical range W (PUP).

Study the membership problem of the numerical range W (PUP) where
P = PS is the symmetrization (resp. P = PA is the antisymmetrization) and
U = U(a,g) is a space of local Hamiltonians.
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Gracias por su atención!

Slides composed using LaTeX (beamer class, tikz package, bclogo package, amongst
others). Graphics created with Wolfram Mathematica.
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